
Formal verification of a classic 
distributed algorithm using 

inductive invariants
A proof pearl

Giuliano Losa
Stellar Development Foundation



Plan for the talk

1. A cute distributed-computing problem and its solution
Kumar, D. A class of termination detection algorithms for distributed computations, 1985
Also in: Chandy and Misra. "Proofs of distributed algorithms: An exercise.", 1990

2. A visual argument of correctness
3. A new proof using an inductive invariant

○ Bounded verification with TLA+ and Apalache
○ Mechanically-checked proof in Isabelle/HOL

4. Fun exercises left to the audience



Model: message-driven, asynchronous distributed 
computation

● A set P of N asynchronous processes
● Asynchronous network
● Directed channel <p,q> between every 

pair of processes
● Every message sent is eventually 

delivered, and only sent messages are 
delivered

● No process failures

● Initially, some messages are in flight
● Upon receiving a message, a process 

sends zero or more messages
● A process only sends messages in upon 

receive a message



The computation terminates once there are no more 
messages in flight



The computation terminates once there are no more 
messages in flight



The computation terminates once there are no more 
messages in flight



The computation terminates once there are no more 
messages in flight



The computation terminates once there are no more 
messages in flight



The computation terminates once there are no more 
messages in flight

T2

At time T2, there are no more 
messages in flight and the 
computation has terminated



Problem: detect termination

● Additional process: the Daemon

● If the system terminates, then eventually, the daemon must declare that the system has 
terminated

● When the daemon declares termination, the system must indeed have terminated



Processes count messages on each channel

P1 P2 P3 P4

P1 1

P2 1

P3 1

P4

P1 P2 P3 P4

P1 0

P2 1

P3 0

P4

sT1 =

rT1 =
At time T1, s and r are inconsistent



Processes count messages on each channel

At time T2, send and receive counts are consistent

P1 P2 P3 P4

P1 1

P2 1

P3 1

P4 1

P1 P2 P3 P4

P1 1

P2 1

P3 1

P4 1

sT1 =

rT1 =



The daemon asks processes for their counts, remembers 
them, and uses that information to detect termination

P1 P2 P3 P4

P1 1

P2 1

P3 1

P4 0

P1 P2 P3 P4

P1 0

P2 1

P3 0

P4 0

sT1 =

rT1 =



Another example

P1 P2 P3 P4

P1 1

P2 1

P3 1

P4 1

P1 P2 P3 P4

P1 0

P2 1

P3 1

P4 0

Daemon counts are inconsistent

sT1 =

rT1 =



When can the daemon declare termination?

Idea: take atomic snapshot (double-collect) and declare termination when the 
snapshot is consistent (number of messages sent on a channel equals to the 
number received)

Simpler: Declare termination as soon as the numbers collected so far are 
consistent





The set of last visits defines the wave

● Activity to the left of the wave is recorded
● Activity to the right or the wave is not 

recorded
● Messages that cross cause 

discrepancies in sent vs received count



P1 P2 P3 P4

P1 1

P2 1

P3 1

P4 1

P1 P2 P3 P4

P1 0

P2 1

P3 1

P4 0

drT2 =

dsT2 =

Deamon does not detect termination







P1 P2 P3 P4

P1 1

P2 1

P3 1

P4 1

P1 P2 P3 P4

P1 1

P2 1

P3 1

P4 1

drT2 =

dsT2 =

Deamon detects termination



Visual demonstration of correctness

Assume all daemon counts match at the end

Init



Visual demonstration of correctness

Case 1: there is activity only on the left of the 
wave

Then the daemon’s counts are the real counts 
and thus no message can be pending

Assume all daemon counts match at the end

Init



Visual demonstration of correctness

Case 2: assume there is activity to the right of 
the wave

Let p be the process that sends the earliest 
message to the right of the wave (p = P2)

Note T > Init

So P received a message from the left of the 
wave, or otherwise p would not be the earliest to 
send on the right

Assume all daemon counts match at the end

Init



Visual demonstration of correctness

P received a message from the left of the wave 
at time T

Thus we must have a process q sending a 
message that crosses the wave (q = P3)

Assume all daemon counts match at the end

Init



Visual demonstration of correctness

P received a message from the left of the wave

Thus we must have a process q sending a 
message that crosses the wave (q = P3)

Thus there must be a compensating messages 
crossing the wave in the other direction

Assume all daemon counts match at the end

Init
T1



Visual demonstration of correctness

P received a message from the left of the wave

Thus we must have a process q sending a 
message that crosses the wave (q = P3)

Thus there must be a compensating messages 
crossing the wave from right to left before T1

But messages cannot go back in time

Assume all daemon counts match at the end

Init
T1



Is this convincing?

Let’s at least check for safety violation in bounded executions with Apalache



Counterexample to safety
P1 P2 P3 P4

P1

P2 1

P3

P4

P1 P2 P3 P4

P1

P2 1

P3

P4

drT2 =

dsT2 =

Counts match but the 
computation has not terminated 



We must make sure we have visited all processes

Declare termination as soon as:

● the numbers collected so far are consistent, and
● all processes have been visited at least once





Instead, prove safety with an inductive 
invariants! 

We just have to check validity of:

Automated solvers can do it (at least for a fixed 
number of processes)

Is it convincing now?

Appeals to intuition, but:

● How do we systematically check we did 
not forget a case again?

● Can a program check that for us?

Formalize in Isabelle, Coq, Lean, etc.? Probably 
a lot of work



Main invariant (almost inductive)

If a set Q is consistent in the daemon’s view 
but not in reality, it’s because the daemon 
missed a message from outside Q to Q.

Why does this imply correctness?

Take Q=P. 

It is not possible to receive a message 
from outside P. 

So when P is consistent in the 
daemon’s view, it is also consistent in 
reality and the computation has 
terminated.



Full inductive invariant:
● If a set Q is consistent in the daemon’s view but not in reality, it’s 

because the daemon missed a message from outside Q to Q.
● Receive count on a channel is smaller than sent count



1. Q is consistent but stale in c’
2. Q’ is consistent but stale in c’
3. Q’ is consistent but stale in c

Daemon 
visits p4

c c’

Take Q that is consistent but stale in c’
Show that the daemon missed a message from outside Q to Q



1. Q is consistent but stale in c’
2. Q’ is consistent but stale in c’
3. Q’ is consistent but stale in c
4. By IH, he daemon missed a 

message to p1 from outside Q’
5. The message cannot be from p4

c c’

Daemon 
visits p4

Take Q that is consistent but stale in c’
Show that the daemon missed a message from outside Q to Q



1. Q is consistent but stale in c’
2. Q’ is consistent but stale in c’
3. Q’ is consistent but stale in c
4. By IH, he daemon missed a 

message to p1 from outside Q’
5. The message cannot be from p4
6. Thus it’s from p3
7. QED

c c’

Daemon 
visits p4

Take Q that is consistent but stale in c’
Show that the daemon missed a message from outside Q to Q



We check inductiveness by case analysis on a single step

Not hard but a little tedious

Easy for automated tools, at least on bounded examples

● Apalache proves inductiveness for 6 processes and unbounded counts
● Mechanically-checked proof for any number of processes, in Isabelle/HOL: 

~200 lines of proof

https://github.com/nano-o/Distributed-termination-detection

https://github.com/nano-o/Distributed-termination-detection


How do we find the invariant?

Interactive tools like Apalache help build intuition fast by providing lots of 
counter-examples.

Typical workflow:

1. Start with the correctness property
2. Get a counterexample to induction
3. Add a conjunct that eliminates the counterexample
4. Repeat

Step 3 requires some intuition to suitably generalize the counterexample



Inductive invariants are great!

● The “intuitive” proof is hard to check and easily leads to errors
● The inductive proof is easy to check and, with proper tooling, also feels 

intuitive
● Inductive invariants: A human-machine interface language

○ Plays the strength of both: the human uses intuition to come up with an inductive invariant; the 
machine enumerates all cases



Fun Exercises

1. The “wrong” algorithm is safe if we assume that a unique process sends the 
initial messages. Find an inductive invariant to prove this.

2. Proof with TLAPS?
3. Model and proof in Ivy

a. Can we axiomatize the domain model (finite sets) in FOL and prove inductiveness for arbitrary 
system size automatically in Ivy?

b. If not, where do we need higher-order reasoning? (Can also be done in Ivy by manually 
instantiating a higher-order axiom where needed)

4. Mechanize the “Wave” proof in a proof assistant? (Isabelle, Coq, Lean, etc.)
Would it really be that hard?



Invariant: for every Q, if Q is consistent but stale in c’, then the daemon has missed 
a message from outside Q to Q. 
Suppose c->c’ and the invariant holds in c. Fix Q that is consistent but stale in c’. 
Show that, in c’, the daemon has missed a message from outside Q to Q. 

● Suppose c->c’ is a receive step of process p.
○ Suppose Q is stale in c. Then, by induction hypothesis, in c the daemon missed a message as 

above. This remains true in c’.
○ Suppose Q is not stale in c. Then there are no messages in flight between members of Q. 

Moreover, p is in Q (other Q cannot change from not stale to stale). Thus p receives a message 
from outside Q.

● Suppose c->c’ is a step of the daemon.
○ Suppose the daemon sets the termination flag. Then counts don’t change.
○ Suppose the daemon updates the count of a process p.

■ Suppose p is not in Q. Then the counts affecting Q do not change.
■ Suppose p is in Q…



Invariant: for every Q, if Q is consistent but stale in c’, then the daemon has missed a 
message from outside Q to Q. 
Suppose c->c’ and the invariant holds in c. Fix Q that is consistent but stale in c’. 
Show that, in c’, the daemon has missed a message from outside Q to Q.

● Suppose c->c’ is a step of the daemon.
○ Suppose the daemon updates the count of a process p

■ Suppose p is in Q. Let Q’=Q\{p}.
Because Q is consistent in c’, Q’ is consistent in c’ and so also in c.
Because Q is stale in c’ and p’s counts cannot be stale, Q’ is stale in c’ and also in c.
By induction hypothesis, in c, the daemon has has missed a message from outside Q’ to Q’. 
It now suffices to show that this message is not from p. This is the case because Q is 
consistent in c’, so any message from p to Q has been counted.


