
Byzantine Consensus Under Dynamic Participation
with a Well-Behaved Majority
Eli Gafni #

University of California, Los Angeles, USA

Giuliano Losa #�

Stellar Development Foundation, USA

Abstract
In a permissionless system like Ethereum, participation may fluctuate dynamically as some partici-
pants unpredictably go offline and some others come back online. In such an environment, traditional
Byzantine fault-tolerant consensus algorithms may stall – even in the absence of failures – because
they rely on the availability of fixed-sized quorums.

The sleepy model formally captures the main requirements for solving consensus under dynamic
participation, and several algorithms solve consensus with probabilistic safety in this model assuming
that, at any time, more than half of the online participants are well behaved. However, whether
safety can be ensured deterministically under these assumptions, especially with constant latency,
remained an open question.

Assuming a constant adversary, we answer in the positive by presenting a consensus algorithm
that achieves deterministic safety and constant latency in expectation. In the full version of this
paper, we also present a second algorithm which obtains both deterministic safety and liveness,
but is likely only of theoretical interest because of its high round and message complexity. Both
algorithms are striking in their simplicity.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases Consensus, Sleepy Model, Dynamic Participation, Byzantine Failures

Related Version Full Version: https://arxiv.org/abs/2301.04817

Supplementary Material Formal specifications: https://github.com/nano-o/dynamic-participation-supplemental

mailto:eli@ucla.edu
mailto:giuliano@stellar.org
https://orcid.org/0000-0003-2341-7928
https://arxiv.org/abs/2301.04817
https://github.com/nano-o/dynamic-participation-supplemental

2 Byzantine Consensus Under Dynamic Participation with a Well-Behaved Majority

1 Introduction

In a permissionless system like Ethereum, the parties running the consensus algorithm are
known and fixed (up to reconfigurations) but they may unpredictably go offline or come back
online. We say that participation is dynamic.

Ideally, we would like to solve consensus even if the set of online participants fluctuates
unpredictably, as long as a sufficient fraction of those who are online are well-behaved. BFT
consensus algorithms like PBFT [7], Algorand Agreement [8] or Tendermint [6] do not work
in this setting because they rely on the availability of fixed-size quorums to make progress,
and thus they stall – even in the absence of failures – if too many participants go offline.

In this paper, we consider the consensus problem in a synchronous system with dynamic
participation similar to the sleepy model [22]. We assume that a fixed set of processes execute
a sequence of rounds where, each round, an adversary partitions the processes into three sets:
offline processes, online and faulty (i.e. controlled by the adversary) processes, and online
and well-behaved processes. Communication is synchronous, which means that a message
sent in round r is guaranteed to be received by all processes that are online in round r + 1.
Importantly, in each round, the processes do not know a priori who is online and who is not,
nor who is well behaved and who is faulty.

Several algorithms solve consensus in variants of this setting [22, 2, 10, 15, 21, 19, 11, 23].
However, one question that remained open is whether we can solve consensus under dynamic
participation with deterministic safety and constant latency in expectation, assuming that:
a) each round, a strict majority of the online participants are well behaved, b) a PKI and
verifiable random functions [20] (VRF) are available, and c) the faulty set is constant from
one round to the next. In this paper, we present such a consensus algorithm.

Solving consensus under those constraints is not easy. On the one hand, we could imagine
using a variant of the Dolev-Strong algorithm [12]. However, this algorithm takes a number
of rounds linear in the number of failures, while we aim at constant latency. On the other
hand, it seems that techniques based on intersecting quorums will not work: In a given
round, it is possible that an online, well-behaved process p receives a message m from a strict
majority of the processes it hears of, while another online, well-behaved process p′ receives a
message m′ ̸= m from a strict majority of the processes it hears of.

We start by observing that we can prevent faulty processes from equivocating and
witholding messages to some processes, using a simple two-round algorithm. This allows us
to simulate what we call the no-equivocation model, in which it is no longer possible for two
well-behaved processes to hear of conflicting strict majorities. Next, taking inspiration from
Gafni and Zikas [14], we solve the commit-adopt problem [13] (a graded agreement [9] with
two grades) deterministically and in exactly 2 rounds of the no-equivocation model (for a
total of 4 rounds of the base model).

Finally, using commit-adopt, we propose a consensus algorithm reminiscent of the phase-
king algorithm [3, 4], where we use a probabilistically-elected leader (which can be done
using VRFs) instead of selecting a king round-robin. The algorithm ensures safety deter-
ministically, terminates in 18 rounds in expectation, and, in an execution with at most m

online participants, each process broadcasts at most m messages each round. Whether the
termination bound and message complexity can be improved is left for future work.

In the full version of this paper, we generalize the model to a setting where the set of
processes has unknown cardinality and failures are governed by a more powerful mobile
message adversary. We then show with detailed proofs that the consensus algorithm described
in the present paper works in this model, and we present another consensus algorithm, inspired

E. Gafni and G. Losa 3

by the Dolev-Strong algorithm [12], that achieves both deterministic safety and liveness,
although with a linear latency in the number of failures (even if the set of processes is
unknown) as long as there is a strict subset of the processes that contains all the faulty sets.

2 The model

We consider a finite, nonempty set P of processes running an algorithm in a synchronous,
message-passing system with point-to-point links between every pair of processes. An
unknown subset F ⊂ P of the processes is faulty.

The set P is publicly known and every process p has a key pair Kp whose public component
is also known to all (this is an abstraction of a PKI). We write Kp(m) for the message m

signed with the private component of Kp.
The system executes an infinite sequence of rounds numbered 1, 2, 3, Each round r,

an adversary partitions the processes into a nonempty set Or of online processes and a set
P \ Or of offline processes such that a) all the faulty processes are online (i.e. F ⊆ Or) and
b) the faulty processes consist of a strict minority of the online processes (i.e. 2|F | < |Or|).
The sets Or and F are a priori unknown to the processes.

Operationally, execution proceeds as follows. Initially, each process receives an external
input. Then, each round r consists of a send phase followed by a receive phase. In the
send phase, each online, well-behaved process sends a set of messages that, if r = 1, is a
function of its input, and that otherwise is a function of the set of messages it received in the
preceding round and of the output of a leader-election oracle described below. In both cases,
the algorithm determines the function. Faulty processes are controlled by the adversary and
may deviate by sending arbitrary messages, except that they cannot forge signatures. In the
receive phase, each process, online or not, receives all the messages sent to it in the round1.

The leader-election oracle gives an output to each online process at the beginning of
every round r > 1, and it ensures with probability 1/2 that every process that is online
and well-behaved in round r receives the identity of a unique process that is online and
well-behaved in round r − 1. In practice, the oracle can be implemented using VRFs by
selecting the process that has the highest VRF output.

Note that, as mentioned in the introduction, a difficulty in this model is that two well-
behaved processes may witness two conflicting strict majorities in the same round. For
example, take 5 processes p1 to p5 and consider a round r where all processes participate
and only p4 and p5 are faulty. Let p1 and p2 broadcast message m while p3 broadcasts
message m′ ̸= m. Moreover, let p4 and p5 send message m′ to p1 while they do not send any
messages to p2. Observe that p1 hears of 5 processes and receives m′ from 3 processes, and
so it witnesses a strict majority for m′. However, p2 hears of 3 processes and receives m from
2 processes, so it witnesses a strict majority for m.

3 Implementing commit-adopt

The most important building block of the consensus algorithm we present in the next section
is a solution to the commit-adopt problem. In the commit-adopt problem, each online process
initially receives an arbitrary input. After a fixed number of rounds R, each online process
must produce an output either of the form ⟨commit, v⟩ for some v, in which case we say

1 Assuming that all processes receive messages is convenient, and it does not make things easier since
only the processes that are online in round r + 1 can use the messages they received in round r.

4 Byzantine Consensus Under Dynamic Participation with a Well-Behaved Majority

the process commits v, or of the form ⟨adopt, v⟩ for some v, in which case we say that the
process adopts v. The outputs must satisfy the following properties:

Agreement If a well-behaved process commits a value v, then every process that is online and
well-behaved in round R must either commit or adopt v.

Validity If all well-behaved processes that initially receive an input receive the same value v as
input, then all well-behaved processes that are online in round R commit v.

Next, we present an algorithm that implements commit-adopt in R = 4 rounds. We first
simulate a model that we call the no-equivocation model, and then implement commit-adopt
in the no-equivocation model.

3.1 Simulating the no-equivocation model
The no-equivocation model is similar to the base model of the preceding section except that,
each round r, each online process broadcasts a single message, and faulty processes may
deviate only by omitting to send their message to some processes (they cannot equivocate, i.e.
send different messages to different processes). Moreover, when a faulty process q deviates
in round r, then the online, well-behaved processes of the next round r + 1 get a failure
notification for q, noted λ, and such that one of the following three cases hold in round r + 1:
1. All online, well-behaved processes receive the same message m from q, or
2. Some online, well-behaved processes receive the same message m from q while all the

others receive the failure notification λ for q, or
3. Some online, well-behaved processes receive the failure notification λ for q while all the

others do not hear of q.

Note that the no-equivocation model does not allow for two different online, well-behaved
processes to witness two conflicting strict majorities of messages in the same round. Moreover,
the failure notification λ limits the ability of faulty processes to make other processes witness
different levels of participation.

We now simulate each no-equivocation round in two rounds of the base model:
1. In the first round, each process p must broadcast the tuple ⟨m, Kp(m)⟩, where m is the

message to simulate the broadcasting of.
2. In the second round, each process p must broadcast ⟨heard-of, m, Kp(m)⟩ for each message

⟨m, Kp(m)⟩ that it received in the first round. Finally, at the end of the second round,
for each process q such that p receives ⟨heard-of, mq, Kq(∗)⟩ for some message ∗:
a. If there is a message m′ such that p receives ⟨heard-of, m′, Kq(m′)⟩ from a strict

majority of the processes it hears of and p does not receive ⟨heard-of, m′′, Kq(m′′)⟩ for
any m′′ ̸= m′, then p must simulate receiving m′ for q.

b. Otherwise, p must simulate receiving the failure notification λ for q.
Essentially, processes broadcast their message and then tell each other what messages they
received in order to detect equivocations or missing messages. An excerpt from the formal
specification of the simulation algorithm, written in PlusCal/TLA+ [16], appears in Figure 2.
The full specification appears in the supplemental material [18].

Note that the simulated received messages satisfy the minority-failure requirement because
the set of faulty processes remains constant.

3.2 Implementing commit-adopt in the no-equivocation model
We now implement commit-adopt in 2 rounds of the no-equivocation model (which amounts
to 4 rounds of the base model) as follows.

E. Gafni and G. Losa 5

1. In the first no-equivocation round, each process must broadcast its input inp.
2. In the second no-equivocation round, each process must propose to commit v, by broad-

casting v, where v is the value received from a strict majority of the processes it hears of,
if any, and otherwise it must broadcast ⟨no-commit⟩.

3. Finally, at the end of the second no-equivocation round, for each process p:
a. If p receives v from a strict majority of the processes it hears of, then it must commit

v.
b. Else, if there is a value v such that p receives v more often than it receives v′ for any

other value v′, then p must adopt v.
c. Else, p can adopt an arbitrary value.

An excerpt from the formal specification of the commit-adopt algorithm, written in Plus-
Cal/TLA+ [16], appears in Figure 3. The full specification appears in the supplemental
material [18].

Let us sketch why the commit-adopt algorithm satisfies the agreement property. Assume
that a well-behaved process p commits a value v. Note that it suffices to show that, for
every v′ ̸= v, no well-behaved process p′ receives ⟨propose-commit, v′⟩ more often than
⟨propose-commit, v⟩. For every process q and value w, let count(q, w) be the number of times
q receives the message ⟨propose-commit, w⟩. With this notation, what we would like to show
is that count(p′, v) − count(p′, v′) > 0.

Note that, since processes may not witness conflicting strict majorities in the no-
equivocation model, no well-behaved process broadcasts ⟨propose-commit, v′⟩ for v′ ̸= v.
Additionally, remember that a faulty process q cannot send different messages to different pro-
cesses and that, should it selectively send a message to only some processes but not others, the
others receive the failure notification λ for q. From this, we get that count(p′, v)−count(p′, v′)
is equal to count(p, v) minus the number of processes q such that either a) p receives
⟨propose-commit, v⟩ from q and p′ receives the failure notification λ for q, or b) p′ receives
⟨propose-commit, v′⟩ from q and p did not receive ⟨propose-commit, v⟩ from q. In both cases,
q must be a faulty process. Thus, we have count(p′, v) − count(p′, v′) ≥ count(p, v) − |F2|,
where F2 is the set of faulty processes in the second no-equivocation round.

Finally, by our assumption that p commits v, we have count(p, v) > |F2|.2 We conclude
that count(p′, v) − count(p′, v′) > 0, i.e. p′ receives ⟨propose-commit, v⟩ more often than
⟨propose-commit, v′⟩.

4 Consensus with deterministic safety and constant expected latency

In the consensus problem, each process that is initially online receives an input taken from a
set of values V , and each process may produce an output called a decision subject to the
following requirements:

Agreement No two well-behaved processes produce different decisions.
Validity If all processes receive the same input v, the no well-behaved process decides v′ ̸= v.
Liveness With nonzero probability, in some round, all online, well-behaved processes decide.

To solve consensus, we use the construction shown in Figure 1. It consists of an infinite
alternating sequence of conciliators and ratifiers (following the terminology of Aspnes [1]),
starting with a conciliator. Informally, a ratifier tries to produce a consensus decision using

2 This is only true if all faulty processes make themselves heard. A complete proof appears in the full
version of this paper.

6 Byzantine Consensus Under Dynamic Participation with a Well-Behaved Majority

Figure 1 Infinite alternating sequence of conciliators and ratifiers. Horizontal arrows represent
processes locally taking their output from one block and using it as input to the next block, while
vertical arrows represent processes possibly outputing a consensus decision.

commit-adopt
on locked

value
(4 rounds)

le
ad

er
 p

ro
po

sa
l

(1
 ro

un
d) commit-adopt

on decision
(4 rounds)

conciliator ratifier

possible decision

commit-adopt
on locked

value
(4 rounds)

le
ad

er
 p

ro
po

sa
l

(1
 ro

un
d) commit-adopt

on decision
(4 rounds)

conciliator ratifier

possible decision

commit-adopt, but since processes are not guaranteed to commit, it may fail to do so. Thus,
the job of a conciliator is to try to make processes agree on their input to the next ratifier.
We do this using a leader. However, to ensure that no leader overrides a previous decision,
processes first negotiate, again using commit-adopt, on whether to listen to the leader or not.

More precisely, a ratifier simply consists of an instance of the commit-adopt algorithm in
which processes try to commit a consensus decision. Each process p inputs ⟨decide, vp⟩ to
the commit-adopt, where vp is p’s output in the preceding conciliator, and each process that
commits ⟨decide, v⟩ for some v decides v as a consensus decision.

In a conciliator, each process p first inputs ⟨lock, vp⟩ into a commit-adopt instance to
try to lock the value vp that it gets as output in the preceding ratifier. Then follows an
additional round, called the leader-proposal round, in which each process p broadcasts its
commit-adopt output. At the end of the leader-proposal round, for each process p that
receives ⟨commit, ⟨lock, v⟩⟩ for some v from a strict majority of the processes it hears of, p

considers v locked and outputs v. Otherwise, p outputs the value v received from the process
identified as leader by the leader-election oracle, if any, and else outputs an arbitrary value.

The lock mechanism ensures that a value unanimously supported by online, well-behaved
processes at the beginning of the conciliator cannot be overridden during the leader-proposal
round. Thus, once a value is first decided, all online, well-behaved processes keep unanimously
supporting that value in all subsequent rounds and the agreement property of consensus is
guaranteed. The validity property holds for similar reasons.

Finally, for liveness, note that if the oracle outputs the same online, well-behaved leader
to all, then all online, well-behaved processes output the same value from the conciliator
(because if an online, well-behaved process considers a value locked, then the leader must
have proposed that value). Since this happens with probability 1/2, the liveness property
holds. Moreover, given that a ratifier takes 4 rounds and a conciliator takes 5 rounds, it
takes at best 9 rounds to decide and 18 rounds in expectation.

5 Related Work

Starting with Bitcoin’s longest-chain protocol, a series of works solve consensus under
dynamic-participation with probabilitic safety [22, 10, 2, 11, 15].

In this paper, we are interested in solving consensus with deterministic safety. Sand-
glass [23] achieves deterministic safety under a minority of benign failures even when the
faulty set can grow from round to round. The algorithm we present also works in the
Sandglass model (without Byzantine failures, we do need to assume a constant adversary).
Gorilla [24] extends Sandglass to Byzantine failures using verifiable delay functions (VDF) [5].
We conjecture that, using VDFs to curb equivocation, the algorithm we present can be ported

E. Gafni and G. Losa 7

to the Gorilla model and achieve constant latency.
Momose and Ren [21] tolerate a minority of Byzantine failures under an eventual-

stabilization assumption. Malkhi, Momose, and Ren [19] remove the stabilization assumption
but tolerate only one-third failures. We improve on this result by tolerating a minority (i.e.
less than 1/2) of failures under a constant adversary, albeit assuming a constant adversary.

Finally, we have used a simple model in order to focus on essential algorithmic issues.
See Lewis-Pye and Roughgarden [17] for more holistic models of permissionless systems.

References
1 James Aspnes. A modular approach to shared-memory consensus, with applications to the

probabilistic-write model. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, 2010. doi:10.1145/1835698.1835802.

2 Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros Genesis: Composable Proof-of-Stake Blockchains with Dynamic Availability. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
2018. doi:10.1145/3243734.3243848.

3 P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed consensus. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science, 1989. doi:
10.1109/SFCS.1989.63511.

4 Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit Optimal Distributed Consen-
sus. In Computer Science: Research and Applications. Springer US, 1992. doi:10.1007/
978-1-4615-3422-8_27.

5 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable Delay Functions.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO
2018, Lecture Notes in Computer Science, Cham. Springer International Publishing. doi:
10.1007/978-3-319-96884-1_25.

6 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus, 2019.
doi:10.48550/arXiv.1807.04938.

7 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20, 2002. doi:10.1145/571637.571640.

8 Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. ALGORAND AGREE-
MENT: Super Fast and Partition Resilient Byzantine Agreement, 2018. URL: https:
//eprint.iacr.org/2018/377.

9 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science, 777, 2019. doi:10.1016/j.tcs.2019.02.001.

10 Phil Daian, Rafael Pass, and Elaine Shi. Snow White: Robustly Reconfigurable Consensus
and Applications to Provably Secure Proof of Stake. In Financial Cryptography and Data
Security, 2019. doi:10.1007/978-3-030-32101-7_2.

11 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. No More Attacks on
Proof-of-Stake Ethereum? arXiv preprint arXiv:2209.03255, 2022.

12 D. Dolev and H. R. Strong. Authenticated Algorithms for Byzantine Agreement. SIAM
Journal on Computing, 12, 1983. doi:10.1137/0212045.

13 Eli Gafni. Round-by-round Fault Detectors (Extended Abstract): Unifying Synchrony and
Asynchrony. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, 1998. doi:10.1145/277697.277724.

14 Eli Gafni and Vasileios Zikas. Synchrony/Asynchrony vs. Stationary/Mobile? The Latter is
Superior...in Theory, 2023. doi:10.48550/arXiv.2302.05520.

15 Vipul Goyal, Hanjun Li, and Justin Raizes. Instant Block Confirmation in the Sleepy Model.
In Financial Cryptography and Data Security, 2021. doi:10.1007/978-3-662-64331-0_4.

16 Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA, 2002.

https://doi.org/10.1145/1835698.1835802
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.1007/978-1-4615-3422-8_27
https://doi.org/10.1007/978-1-4615-3422-8_27
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.48550/arXiv.1807.04938
https://doi.org/10.1145/571637.571640
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1137/0212045
https://doi.org/10.1145/277697.277724
https://doi.org/10.48550/arXiv.2302.05520
https://doi.org/10.1007/978-3-662-64331-0_4

8 Byzantine Consensus Under Dynamic Participation with a Well-Behaved Majority

17 Andrew Lewis-Pye and Tim Roughgarden. Permissionless Consensus, 2023. doi:10.48550/
arXiv.2304.14701.

18 Giuliano Losa. Supplemental material. 2023. doi:10.5281/zenodo.8226250.
19 Dahlia Malkhi, Atsuki Momose, and Ling Ren. Byzantine Consensus under Fully Fluctuating

Participation, 2022. URL: https://eprint.iacr.org/2022/1448.
20 S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th Annual Symposium

on Foundations of Computer Science, 1999. doi:10.1109/SFFCS.1999.814584.
21 Atsuki Momose and Ling Ren. Constant Latency in Sleepy Consensus. In Proceedings

of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2022.
doi:10.1145/3548606.3559347.

22 Rafael Pass and Elaine Shi. The Sleepy Model of Consensus. In Advances in Cryptology –
ASIACRYPT 2017, 2017. doi:10.1007/978-3-319-70697-9_14.

23 Youer Pu, Lorenzo Alvisi, and Ittay Eyal. Safe Permissionless Consensus. In 36th International
Symposium on Distributed Computing (DISC 2022), volume 246, 2022. doi:10.4230/LIPIcs.
DISC.2022.33.

24 Youer Pu, Ali Farahbakhsh, Lorenzo Alvisi, and Ittay Eyal. Gorilla: Safe Permissionless
Byzantine Consensus, 2023. doi:10.48550/arXiv.2308.04080.

https://doi.org/10.48550/arXiv.2304.14701
https://doi.org/10.48550/arXiv.2304.14701
https://doi.org/10.5281/zenodo.8226250
https://eprint.iacr.org/2022/1448
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1145/3548606.3559347
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.4230/LIPIcs.DISC.2022.33
https://doi.org/10.4230/LIPIcs.DISC.2022.33
https://doi.org/10.48550/arXiv.2308.04080

E. Gafni and G. Losa 9

--algorithm NoEquivocation{1

variables2

input ∈ [P → V] ;3

received = [p ∈ P 7→ [q ∈ P 7→ Bot]] ; message received by p from q4

rnd = 1 ; 1..35

output = [p ∈ P 7→ [q ∈ P 7→ Bot]] ; output[p][q] is the message that p simulates receiving from q6

define {7

HeardOf (p)
∆
= {q ∈ P : received [p][q] ̸= Bot} heard of in the current round8

Minority(S)
∆
= {M ∈ subset S : 2 ∗ Cardinality(M) < Cardinality(S)}9

NumHeardOf (p1, p2)
∆
= number of processes that report to p1 hearing from p2:10

Cardinality({q ∈ P : received [p1][q] ̸= Bot ∧ received [p1][q][p2] ̸= Bot})11

NumHeardValue(p1, p2, v)
∆
= number of processes that report to p1 hearing v from p2:12

Cardinality({q ∈ P : received [p1][q] ̸= Bot ∧ received [p1][q][p2] = v})13

ValidOutput(p1, p2, v)
∆
=14

∧ 2 ∗NumHeardValue(p1, p2, v) > Cardinality(HeardOf (p1))15

∧ ∀ q ∈ P : received [p1][q] ̸= Bot ∧ received [p1][q][p2] ̸= Bot ⇒ received [p1][q][p2] = v16

Output(p1, p2)
∆
=17

if ∃ v ∈ V : ValidOutput(p1, p2, v) true for at most one value v18

then choose v ∈ V : ValidOutput(p1, p2, v)19

else20

if ∃ q ∈ P : received [p1][q] ̸= Bot ∧ received [p1][q][p2] ̸= Bot21

then Lambda22

else Bot23

SimulatedParticipants
∆
= {p ∈ P : ∃ q ∈ P : output [q][p] ̸= Bot}24

CorrectSimulatedParticipants
∆
= participating [1] \ corrupted25

Now we define the correctness properties of the algorithm:26

NoEquivocation
∆
= ∀ p1, p2, q ∈ P :27

output [p1][q] ∈ V ∧ pc[p2] = “Done” ⇒ output [p2][q] ∈ {output [p1][q], Lambda}28

NoTampering
∆
= ∀ p, q ∈ P :29

∧ p ∈ CorrectSimulatedParticipants30

∧ pc[q] = “Done”31

⇒ output [q][p] = input [p]32

MinorityCorruption
∆
= (∀ p ∈ P : pc[p] = “Done”) ⇒33

2 ∗ Cardinality(CorrectSimulatedParticipants) > Cardinality(SimulatedParticipants) }34

We now specify the simulation algorithm:35

process (proc ∈ P) {36

r1: broadcast(input [self]) ;37

r2: await rnd = 2 ;38

broadcast(received [self]) ;39

r3: await rnd = 3 ;40

output [self] := [p ∈ P 7→ Output(self , p)] } }41

Figure 2 Excerpt from the PlusCal/TLA+ specification of the simulation algorithm.

10 Byzantine Consensus Under Dynamic Participation with a Well-Behaved Majority

--algorithm CommitAdopt{1

variables2

input ∈ [P → V] ; the processors’ inputs3

message received by p from q in the current round; Bot means no message received:4

received = [p ∈ P 7→ [q ∈ P 7→ Bot]] ;5

rnd = 1 ; the current round (1, 2, or 3); round 3 is when we produce outputs6

output = [p ∈ P 7→ Bot] ;7

define {8

the set of processors from which p received a message (i.e. heard of):9

HeardOf (p)
∆
= {q ∈ P : received [p][q] ̸= Bot}10

the set of minority subsets of S:11

Minority(S)
∆
= {M ∈ subset S : 2 ∗ Cardinality(M) < Cardinality(S)}12

the number of votes for v that p received:13

VoteCount(p, v)
∆
= Cardinality({q ∈ P : received [p][q] = v})14

the set of values v for which p received a strict majority of votes:15

VotedByMajority(p)
∆
=16

{v ∈ V : 2 ∗VoteCount(p, v) > Cardinality(HeardOf (p))}17

the set of values v that were voted for the most often according to p:18

MostVotedFor(p)
∆
=19

{v ∈ V : ∀w ∈ V \ {v} : VoteCount(p, v) ≥ VoteCount(p, w)}20

the correctness properties:21

Agreement
∆
= ∀ p, q ∈ P :22

output [p] ̸= Bot ∧ output [q] ̸= Bot ∧ output [p][1] = “commit”23

⇒ output [p][2] = output [q][2]24

Validity
∆
= ∀ p ∈ P : ∀ v ∈ V :25

pc[p] = “Done” ∧ (∀ q ∈ P : input [q] = v)26

⇒ output [p] = ⟨“commit”, v⟩ }27

process (proc ∈ P) {28

r1: broadcast(input [self]) ;29

r2: await rnd = 2 ;30

if (VotedByMajority(self) ̸= {})31

with (v ∈ VotedByMajority(self))32

broadcast(v)33

else broadcast(NoCommit) ;34

r3: await rnd = 3 ; in round 3 we just produce an output35

if (VotedByMajority(self) ̸= {})36

with (v ∈ VotedByMajority(self))37

output [self] := ⟨“commit”, v⟩38

else if (MostVotedFor(self) ̸= {})39

with (v ∈ MostVotedFor(self))40

output [self] := ⟨“adopt”, v⟩41

else42

with (v ∈ V)43

output [self] := ⟨“adopt”, v⟩ } }44

Figure 3 Excerpt from the PlusCal/TLA+ specification of the commit-adopt algorithm.

	1 Introduction
	2 The model
	3 Implementing commit-adopt
	3.1 Simulating the no-equivocation model
	3.2 Implementing commit-adopt in the no-equivocation model

	4 Consensus with deterministic safety and constant expected latency
	5 Related Work

