
Consensus under dynamic
participation with a minority of failures

Giuliano Losa, Stellar Development Foundation
Eli Gafni, UCLA

1

We have players in a synchronous system with dynamic partici-
pation and a static, always-online, minority adversary

2

We have players in a synchronous system with dynamic partici-
pation and a static, always-online, minority adversary

2

We want to solve consensus with constant expected latency

Each player is given an external input and must produce an output
such that:

Agreement
No two well-behaved players output differently

Validity
If all well-behaved players have the same input v, then no players
outputs v′ ̸= v

Termination
There is a constant1 N such that, in expectation, in every round r ≥ N,
every online, well-behaved player outputs.

1Constant means independent of the number of players and level of the participation.

3

Difficulty: we cannot expect to rely on more than a majority; yet
players may witness conflicting majorities

p1 gets a majority for v1; p2 gets a majority for v2

4

Difficulty: players may witness conflicting majorities
even without equivocation

Players p1 and p2 get a majority for v2; p3 gets a majority for v1.

For p1 and p2, this is indistinguishable from p4 and p5 being offline.

5

Difficulty: local state is useless because no well-behaved player
may participate more than once

6

What are the properties we can rely on?

Each round:

• All online players received all the messages from the
well-behaved players of the previous round

• If a player p receives v from a strict majority, then at least one
well-behaved player sent v

Plan of attack:

1. Simulate a model that forbids equivocation and selective
disclosure of participation. This rules out conflicting majorities.

2. Solve consensus in this new model.

7

What are the properties we can rely on?

Each round:

• All online players received all the messages from the
well-behaved players of the previous round

• If a player p receives v from a strict majority, then at least one
well-behaved player sent v

Plan of attack:

1. Simulate a model that forbids equivocation and selective
disclosure of participation. This rules out conflicting majorities.

2. Solve consensus in this new model.

7

The no-equivocation model prevents conflicting majorities

The no-equivocation model with failure-notification λ

1. Players cannot equivocate:
if p′ receives v ̸= λ from p and p′′ receives v′ from p,
then v′ = v or v′ = λ.

2. Players cannot selectively send messages:
if p′ receives v from p and p′′ does not,
then p′′ receives the failure notification λ from p.

8

The no-equivocation model prevents conflicting majorities

The no-equivocation model with failure-notification λ

1. Players cannot equivocate:
if p′ receives v ̸= λ from p and p′′ receives v′ from p,
then v′ = v or v′ = λ.

2. Players cannot selectively send messages:
if p′ receives v from p and p′′ does not,
then p′′ receives the failure notification λ from p.

8

The no-equivocation model prevents conflicting majorities

The no-equivocation model with failure-notification λ

1. Players cannot equivocate:
if p′ receives v ̸= λ from p and p′′ receives v′ from p,
then v′ = v or v′ = λ.

2. Players cannot selectively send messages:
if p′ receives v from p and p′′ does not,
then p′′ receives the failure notification λ from p.

8

We implement a no-equivocation round in 2 base rounds using
message authentication

Round 1
Each online player signs and broadcasts the message to simulate

Round 2
Each online player re-broadcasts all the signed messages it
received

Output
For each online player p: for each player p′ that p hears of:

1. If p hears that p′ sent two different messages in round 1, then
simulate receiving λ from p′.

2. Else, if a strict majority forwarded a message m from p′, then
simulate receiving m for p′.

3. Else, simulate receiving λ from p′

9

We implement a no-equivocation round in 2 base rounds using
message authentication

Round 1
Each online player signs and broadcasts the message to simulate

Round 2
Each online player re-broadcasts all the signed messages it
received

Output
For each online player p: for each player p′ that p hears of:

1. If p hears that p′ sent two different messages in round 1, then
simulate receiving λ from p′.

2. Else, if a strict majority forwarded a message m from p′, then
simulate receiving m for p′.

3. Else, simulate receiving λ from p′

9

We implement a no-equivocation round in 2 base rounds using
message authentication

Round 1
Each online player signs and broadcasts the message to simulate

Round 2
Each online player re-broadcasts all the signed messages it
received

Output
For each online player p: for each player p′ that p hears of:

1. If p hears that p′ sent two different messages in round 1, then
simulate receiving λ from p′.

2. Else, if a strict majority forwarded a message m from p′, then
simulate receiving m for p′.

3. Else, simulate receiving λ from p′

9

We implement a no-equivocation round in 2 base rounds using
message authentication

Round 1
Each online player signs and broadcasts the message to simulate

Round 2
Each online player re-broadcasts all the signed messages it
received

Output
For each online player p: for each player p′ that p hears of:

1. If p hears that p′ sent two different messages in round 1, then
simulate receiving λ from p′.

2. Else, if a strict majority forwarded a message m from p′, then
simulate receiving m for p′.

3. Else, simulate receiving λ from p′

9

A well-behaved player always gets its message simulated

m

m
m

m

10

A well-behaved player always gets its message simulated

m

m
m

m m

10

An ill-behaved player cannot cheat

m

11

An ill-behaved player cannot cheat

m
m

m

11

An ill-behaved player cannot cheat

m
m

m

m

11

An ill-behaved player cannot cheat

m
m

m

m

11

We solve consensus with an alternating sequence of conciliator
and adopt-commit phases

conciliator commit-adoptcommit-adopt conciliator

possible decision

ex
te

rn
al

 in
pu

ts

possible decision

tries to establish
agreement

tries to establish
agreement

Commit-Adopt
Each player outputs either commit(v) or
adopt(v) for some v, subject to:

• Validity: If all well-behaved have
input v, then all well-behaved
commit v.

• Agreement: If a well-behaved player
commits a value v, then all
well-behaved players either commit
or adopt v.

Conciliator
Each player outputs a value, subject to:

• Validity: If all well-behaved have
input v, then all well-behaved
commit v.

• Agreement: With probability 1/2, all
players output the same value v.

12

We solve consensus with an alternating sequence of conciliator
and adopt-commit phases

conciliator commit-adoptcommit-adopt conciliator

possible decision

ex
te

rn
al

 in
pu

ts

possible decision

tries to establish
agreement

tries to establish
agreement

Commit-Adopt
Each player outputs either commit(v) or
adopt(v) for some v, subject to:

• Validity: If all well-behaved have
input v, then all well-behaved
commit v.

• Agreement: If a well-behaved player
commits a value v, then all
well-behaved players either commit
or adopt v.

Conciliator
Each player outputs a value, subject to:

• Validity: If all well-behaved have
input v, then all well-behaved
commit v.

• Agreement: With probability 1/2, all
players output the same value v.

12

We implement commit-adopt in 2 no-equivocation rounds

Round 1
Broadcast input

Round 2
1. If received a value v from a strict majority
then broadcast v else broadcast ⊥

2. At the end of the round:
a) If received v from a strict majority, commit v.
b) Else, if received v more often than any other value, adopt v.
c) Else, adopt any value.

13

The conciliator takes 3 no-equivocation rounds

commit-adopt leader

Rounds 1 and 2:
Do commit-adopt.

Round 3:

• Broadcast commit-adopt output and VRF evaluation

• End of round:

• If received a value v from a majority, output v.
• Else, output the value of the player with largest VRF output.

Question
Why do we need the two commit-adopt rounds before leader-election?

14

Consensus in N = 10 no-equivocation rounds in expectation

common well-
behaved leader

with probability 1/2

commit-adopt leader
conciliator commit-adopt

commit-adopt leader
conciliator commit-adopt

decision decision
common well-

behaved leader
with probability 1/2

15

Why is the commit-adopt algorithm correct?

Round 1
Broadcast input

Round 2
1. If received a value v from a strict majority
then broadcast v else broadcast ⊥

2. At the end of the round:
a) If received v from a strict majority, commit v.
b) Else, if received v more often than any other value, adopt v.
c) Else, adopt any value.

16

The commit-adopt algorithm relies on a simple property of sets:
if |X| > |Y|, then |X \ Y| > |Y \ X|

17

Note: no two well-behaved players broadcast different values in
round 2

Round 1
Broadcast input

Round 2
1. If received a value v from a strict majority
then broadcast v else broadcast ⊥

2. At the end of the round:
a) If received v from a strict majority, commit v.
b) Else, if received v more often than any other value, adopt v.
c) Else, adopt any value.

18

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]

#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]

[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]

By the property of sets: #p′(v) > #p′(v′)
Q.E.D.

19

Assume p commits v; assume by contradiction that p′ commits
or adopts v′ ̸= v

#p′(v)= [B,D]− [C, E]
#p′(v′)= [C, E]− [B,D]
[C, E] is a minority among H and [B,D] a majority, so [B,D] > [C, E]
By the property of sets: #p′(v) > #p′(v′)
Q.E.D. 19

Paper and supplemental material

To be published at DISC 2023 (as a brief announcement), and
available at https://www.losa.fr.
Supplemental material available at https://github.com/
nano-o/dynamic-participation-supplemental

• TLA+ specifications of the algorithms.
• Mechanized proof of the commit-adopt algorithm in
Isabelle/HOL.

20

https://www.losa.fr
https://github.com/nano-o/dynamic-participation-supplemental
https://github.com/nano-o/dynamic-participation-supplemental

Related work

• In a blog post, Malkhi, Momose, and Ren propose a different
algorithm solving the same problem

• Pu et al. propose the Gorilla algorithm (DISC 2023), which solves
consensus with deterministic safety using VDF proof of work.

21

Future work

It seems easy to implement the no-equivocation model in the
resource-constrained VDF model of Gorilla.

This yields the first fully permissionless consensus algorithm with
unconstrained participation (Bitcoin needs a known upper bound on
participation)

22

