Consensus under dynamic
participation with a minority of failures

Giuliano Losa, Stellar Development Foundation
Eli Gafni, UCLA

We have players in a synchronous system with dynamic partici-

pation and a static, always-online, minority adversary

n g‘
Nhlb
TN
p17p2:p4}
p3 ol
g /
yZ!
Py = {p1,p2, ps}

We have players in a synchronous system with dynamic partici-

pation and a static, always-online, minority adversary

? {p2, ps}

D1 >
{p1, e //
s {2, p3, pa}
p17p2:p4}// ?
p3 =

P4

/

\/

Py = {p1,p2, pa} Py = {ps, p3, pa}

We want to solve consensus with constant expected latency

Each player is given an external input and must produce an output
such that:

Agreement
No two well-behaved players output differently

Validity
If all well-behaved players have the same input v, then no players
outputs v/ #£ v

Termination
There is a constant! N such that, in expectation, in every round r > N,
every online, well-behaved player outputs.

TConstant means independent of the number of players and level of the participation.

Difficulty: we cannot expect to rely on more than a majority; yet

players may witness conflicting majorities

n V1 <1ﬂ7 U2, 21>
vy (v1, Vg, V2)
P2
U1
& Uy
p3

p1 gets a majority for vq; p, gets a majority for v,

Difficulty: players may witness conflicting majorities

even without equivocation

vy <U171Q712>

Sl Jsn
D2

<U17'U27U2,U],'Ul>
Ps ”2; ; = ==
& 01/

P4

® |

Ps

Players p; and p, get a majority for v,; p3 gets a majority for v.

For p; and p,, this is indistinguishable from p, and ps being offline.

Difficulty: local state is useless because no well-behaved player

may participate more than once

Py = {p1,p2} Py = {p3,ps} Py = {ps,p6}

| = =

P+ >
= =

P2\~ >
SO »

b3 L1 >
\\ 7

D4

v

Ps

v

~
N

7

De

v

What are the properties we can rely on?

Each round:

- All online players received all the messages from the
well-behaved players of the previous round

- If a player p receives v from a strict majority, then at least one
well-behaved player sent v

What are the properties we can rely on?

Each round:

- All online players received all the messages from the
well-behaved players of the previous round

- If a player p receives v from a strict majority, then at least one
well-behaved player sent v

Plan of attack:

1. Simulate a model that forbids equivocation and selective
disclosure of participation. This rules out conflicting majorities.

2. Solve consensus in this new model.

The no-equivocation model prevents conflicting majorities

The no-equivocation model with failure-notification A

1.
if p’ receives v # X from p and p” receives V' from p,
thenv =vorv =\

if p’ receives v from p and p” does not,
then p” receives the failure notification A from p.

The no-equivocation model prevents conflicting majorities

The no-equivocation model with failure-notification A

1.
if p’ receives v # X from p and p” receives V' from p,
thenv =vorv =\

if p’ receives v from p and p” does not,
then p” receives the failure notification A from p.

(1 <2ﬂ> U2721>

Y4

I ’U><) <ﬂvlaﬂ>
2

o ”%

p3

The no-equivocation model prevents conflicting majorities

The no-equivocation model with failure-notification A

1.
if p’ receives v # X from p and p” receives V' from p,
thenv =vorv =\

if p’ receives v from p and p” does not,
then p” receives the failure notification A from p.

V1 <2£7 U2721> vy <U17U277)27)\7)\>

b1 D1
o P2

P2
5 " W
®
vy

P4

o

D5 8

We implement a no-equivocation round in 2 base rounds using

message authentication

We implement a no-equivocation round in 2 base rounds using

message authentication

Round 1
Each online player signs and broadcasts the message to simulate

We implement a no-equivocation round in 2 base rounds using

message authentication

Round 1
Each online player signs and broadcasts the message to simulate

Round 2

Each online player re-broadcasts all the signed messages it
received

We implement a no-equivocation round in 2 base rounds using

message authentication

Round 1
Each online player signs and broadcasts the message to simulate

Round 2
Each online player re-broadcasts all the signed messages it
received

Output
For each online player p: for each player p’ that p hears of:

1. If p hears that p’ sent two different messages in round 1, then
simulate receiving A from p’.

2. Else, if a strict majority forwarded a message m from p’, then
simulate receiving m for p’.

3. Else, simulate receiving X from p’

A well-behaved player always gets its message simulated

v

m
pl /—\
m
D2 /\

v

v

P3

A well-behaved player always gets its message simulated

v

P3

An ill-behaved player cannot cheat

P1

P2

P3

v

v

v

1

An ill-behaved player cannot cheat

P1

- X
g |

P3

v

v

v

1

An ill-behaved player cannot cheat

P1

v

D2

& i

P3

v

v

1

An ill-behaved player cannot cheat

P1

v

v

D2 —

@ m

P3

v

1

We solve consensus with an alternating sequence of conciliator

and adopt-commit phases

2 conciliator commit-adopt conciliator commlt-adopt
a
5
= cy CA[l] CA[Q
£
2 I I I
@ tries to establish tries to establish
agreement agreement
posslble declslon posslhle declslon

We solve consensus with an alternating sequence of conciliator

and adopt-commit phases

conciliator commit-adopt
C[CA[]
| | |

conciliator commit-adopt |
cp CA[2]
L

external inputs

tries to establish
agreement
posslble declslon

Commit-Adopt

Each player outputs either commit(v) or
adopt(v) for some v, subject to:

- Validity: If all well-behaved have
input v, then all well-behaved
commit v.

- Agreement: If a well-behaved player
commits a value v, then all
well-behaved players either commit
or adopt v.

tries to establish
agreement J’ ‘J’ ‘J’ .
possible decision
Conciliator

Each player outputs a value, subject to:

- Validity: If all well-behaved have
input v, then all well-behaved
commit v.

- Agreement: With probability 1/2, all
players output the same value v.

We implement commit-adopt in 2 no-equivocation rounds

Round 1
Broadcast input

Round 2

1. If received a value v from a strict majority
then broadcast v else broadcast L

2. At the end of the round:
a) If received v from a strict majority, commit v.
b) Else, if received v more often than any other value, adopt v.
c) Else, adopt any value.

The conciliator takes 3 no-equivocation rounds

commit-adopt (" leader)

p1

n XL, LS
)N

p3

Rounds 1 and 2:
Do commit-adopt.

Round 3:
- Broadcast commit-adopt output and VRF evaluation
- End of round:
- If received a value v from a majority, output v.

- Else, output the value of the player with largest VRF output.

Question

Why do we need the two commit-adopt rounds before leader-election?
14

Consensus in N = 10 no-equivocation rounds in expectation

(conciliator C[1])(commit-adopt A1) [conciliator C[2] \fcommit-adopt caj2))i

"I SIS XS S
PRI AR AR
0

J " J\L J

common well- common well-
behaved leader :> decision behaved leader i decision

with probability 1/2 with probability 1/2

Why is the commit-adopt algorithm correct?

Round 1
Broadcast input

Round 2

1. If received a value v from a strict majority
then broadcast v else broadcast L

2. At the end of the round:
a) If received v from a strict majority, commit v.
b) Else, if received v more often than any other value, adopt v.
c) Else, adopt any value.

The commit-adopt algorithm relies on a simple property of sets:
if [X] > |Y], then [X\ Y| > |Y\ X|

[XAY] > Y\ X

Note: no two well-behaved players broadcast different values in

round 2

Round 1
Broadcast input

Round 2

1. If received a value v from a strict majority
then broadcast v else broadcast L

2. At the end of the round:
a) If received v from a strict majority, commit v.
b) Else, if received v more often than any other value, adopt v.
c) Else, adopt any value.

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

H=H,nHy,

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

H=H,nHy,

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

#D/(V): [Ba D] - [Ca E]

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

#D/(V): [Ba D] - [Ca E]
= [C,E] - [B, D]

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

#p (V)= [B, D] = [C,]
#p (V)= [C E] - [B, D]
[C, E] is a minority among H and [B, D] a majority, so [B, D] > [C, E]

19

Assume p commits v; assume by contradiction that p’ commits
or adopts V' #£ v

#p (V)= [B, D] — [, E]

o (V)= [C E] = [B, D]

[C, E] is a minority among H and [B, D] a majority, so [B, D] > [C, E]
By the property of sets: #p/(V) > #, (V)

Q.E.D. 19

Paper and supplemental material

To be published at DISC 2023 (as a brief announcement), and
available at https://www.losa. fr.

Supplemental material available at https://github.com/
nano-o/dynamic-participation-supplemental

- TLA+ specifications of the algorithms.

- Mechanized proof of the commit-adopt algorithm in
Isabelle/HOL.

20

https://www.losa.fr
https://github.com/nano-o/dynamic-participation-supplemental
https://github.com/nano-o/dynamic-participation-supplemental

Related work

- In a blog post, Malkhi, Momose, and Ren propose a different
algorithm solving the same problem

- Pu et al. propose the Gorilla algorithm (DISC 2023), which solves
consensus with deterministic safety using VDF proof of work.

21

It seems easy to implement the no-equivocation model in the
resource-constrained VDF model of Gorilla.

This yields the first fully permissionless consensus algorithm with
unconstrained participation (Bitcoin needs a known upper bound on
participation)

22

