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Motivation: checking that the TetraBFT consensus protocol 
satisfies its liveness property

TetraBFT (PODC 2024) is a new BFT consensus protocol with a subtle liveness 
argument, and we would like to mechanically verify it
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Due to Byzantine behavior, state-space exploration with TLC is 
intractable

TLC explicitly enumerates bounded behaviors

This is a fully-automated, push-button solution

But it is too slow, because Byzantine behavior 
creates too many successors to each state



An inductive invariant holds holds initially and that every step preserves it:

For bounded domains, this can be encoded into SMT formulas, which Apalache 
passes to the Z3 solver for efficient checking.

We obtain a semi-automated proof method for verifying that a state predicate P 
always holds:

1. The user provides a candidate inductive invariant I
2. Apalache checks that I is indeed inductive and that I ⇒ P

a. If not, go back to 1

Given a user-provided inductive invariant, Apalache can efficiently 
that a state predicate always holds



To use inductive invariants for liveness, we propose a 
simple liveness-to-safety reduction

Safety VS Liveness

● Safety: all reachable states satisfy P
● Liveness: fairness conditions + temporal 

property of behaviors
○ Example: if every message is eventually 

delivered, nodes eventually decide

Liveness to safety in practice

● Some tools produce a new safety problem 
automatically

○ Works best in conjunction with automated 
checking methods

○ Manually finding an inductive invariants for 
an automatically-generated safety problem 
is not fun! (and difficult)

● We give an “easy” reduction for the special 
case of eventually-synchronous BFT 
protocols

System S
Liveness property L

System S’
Safety property P

Liveness to 
safety reduction

P holds in S’ then
L holds in S



In this talk, we explain the liveness-proof methodology 
using the Paxos consensus algorithm

System model

● We have a fixed set of nodes (or 
“acceptors”) in a message-passing 
network

● The network is initially asynchronous, and 
becomes synchronous after time GST

● Local clocks that advance at the same rate
● Less than ½ of the nodes may crash-stop

The Consensus Problem

Nodes each start with a private value and must 
decide on a common value.

● Safety: no two well-behaved nodes decide 
differently (and, if all nodes are well-behaved, then 
they decide one of the inputs)

● Liveness: eventually, all well-behaved 
nodes decide



A leader instruct nodes to vote for a value

Nodes vote for the leader’s value

A node decides a value when a majority of 
nodes vote for it



If the first leader fails to impose its decision, nodes time-out and try again with a new leader

Each such attempt is called a ballot
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To make things easier, we abstract timers away

Instead of modeling message delay and timers, we prove the following liveness 
property:

If there is a good ballot B such that:

● No node starts a higher ballot
● The leader of B is well-behaved

Then, eventually, all well-behaved nodes decide



In TetraBFT, the general idea is the same but the protocol 
is more complicated

● There are 6 types of messages per ballot
● The leader may be malicious!

○ Nodes must verify that the leader’s proposal is legitimate
○ Main difficulty: despite differing views, the leader must make sure that other nodes will be able 

to check that it’s proposal is legitimate
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Methodology, step 1: prophesize the “good ballot”



Without Byzantine behavior, we can check the following 
temporal property with TLC… but, with TetraBFT, we run 
into scaling issues



Instead, we will verify that all fairly-scheduled actions are 
eventually disabled, and that once this is the case we must 
have a decision



Methodology, step 2: verify that all fairly-scheduled actions are 
self-disabling
Since we work in a finite domain, the property implies that, if those actions are 
fairly scheduled, then eventually all will be disabled

This implies that, if Liveness holds and the actions are fairly scheduled, then 
eventually one value is chosen



Methodology, step 2a: add ghost variable to remember which 
actions took place already

…



Methodology, step 2b: assert and verify with an inductive 
invariant that all fair actions are self-disabling



Methodology, step 3: verify with an inductive invariant that, 
once all actions are disabled, we have a decision



Verifying liveness of eventually-synchronous consensus 
protocols, in a nutshell

1. We modify the specification to non-deterministically pick a good ballot B and  
enforce that no higher ballots are started and that the leader of B is 
well-behaved

2. We verify that each fair action is self-disabling. Under fair scheduling, this 
means that all (the finitely many) actions will eventually be disabled.

3. We verify that, once all actions are disabled, we have a decision

In steps 2 and 3 we verify safety properties
We can use an inductive invariant verified with Apalache



We are able to check the liveness of TetraBFT for 
interesting problem sizes

Problem size

● 3 rounds (with 5 sub-phases per round)
● 3 possible decision values
● 3 nodes n₁, n₂, n₃
● Either n₂ or n₃ are malicious (but not both)
● Quorums are {n₁,n₂} and {n₁,n₃}

Resources used by Apalache

● ~ few hours
● ~ 40 GB of RAM
● 16 cores on a recent (2022) desktop 

machine

Specifications are available at
https://github.com/nano-o/tetrabft-tla 



Future work

● Prove what we assumed about timer management, i.e. that eventually, there 
is a ballot led by a well-behaved node such that no node ever starts a higher 
ballot (Paxos)

○ Requires a real-time model of the behavior after GST
● Same thing for TetraBFT, where this is more complex: round progression must 

be governed by a so-called BFT synchronizer algorithm


