
Verifying the Liveness of
Eventually-Synchronous BFT

Consensus Protocols
A pragmatic approach

Giuliano Losa
Stellar Development Foundation

Motivation: checking that the TetraBFT consensus protocol
satisfies its liveness property

TetraBFT (PODC 2024) is a new BFT consensus protocol with a subtle liveness
argument, and we would like to mechanically verify it

Xuechao Wang
HKUST

Giuliano Losa
SDF

Qianyu Yu
HKUST The Saddest Moment, James Mickens

Due to Byzantine behavior, state-space exploration with TLC is
intractable

TLC explicitly enumerates bounded behaviors

This is a fully-automated, push-button solution

But it is too slow, because Byzantine behavior
creates too many successors to each state

An inductive invariant holds holds initially and that every step preserves it:

For bounded domains, this can be encoded into SMT formulas, which Apalache
passes to the Z3 solver for efficient checking.

We obtain a semi-automated proof method for verifying that a state predicate P
always holds:

1. The user provides a candidate inductive invariant I
2. Apalache checks that I is indeed inductive and that I ⇒ P

a. If not, go back to 1

Given a user-provided inductive invariant, Apalache can efficiently
that a state predicate always holds

To use inductive invariants for liveness, we propose a
simple liveness-to-safety reduction

Safety VS Liveness

● Safety: all reachable states satisfy P
● Liveness: fairness conditions + temporal

property of behaviors
○ Example: if every message is eventually

delivered, nodes eventually decide

Liveness to safety in practice

● Some tools produce a new safety problem
automatically

○ Works best in conjunction with automated
checking methods

○ Manually finding an inductive invariants for
an automatically-generated safety problem
is not fun! (and difficult)

● We give an “easy” reduction for the special
case of eventually-synchronous BFT
protocols

System S
Liveness property L

System S’
Safety property P

Liveness to
safety reduction

P holds in S’ then
L holds in S

In this talk, we explain the liveness-proof methodology
using the Paxos consensus algorithm

System model

● We have a fixed set of nodes (or
“acceptors”) in a message-passing
network

● The network is initially asynchronous, and
becomes synchronous after time GST

● Local clocks that advance at the same rate
● Less than ½ of the nodes may crash-stop

The Consensus Problem

Nodes each start with a private value and must
decide on a common value.

● Safety: no two well-behaved nodes decide
differently (and, if all nodes are well-behaved, then
they decide one of the inputs)

● Liveness: eventually, all well-behaved
nodes decide

A leader instruct nodes to vote for a value

Nodes vote for the leader’s value

A node decides a value when a majority of
nodes vote for it

If the first leader fails to impose its decision, nodes time-out and try again with a new leader

Each such attempt is called a ballot

If the first leader fails to impose its decision, nodes time-out and try again with a new leader

Each such attempt is called a ballot

If the first leader fails to impose its decision, nodes time-out and try again with a new leader

Each such attempt is called a ballot

If the first leader fails to impose its decision, nodes time-out and try again with a new leader

Each such attempt is called a ballot

If the first leader fails to impose its decision, nodes time-out and try again with a new leader

Each such attempt is called a ballot

If the first leader fails to impose its decision, nodes time-out and try again with a new leader

Each such attempt is called a ballot

If the first leader fails to impose its decision, nodes time-out and try again with a new leader

Each such attempt is called a ballot

Depending on message delay, node might “step on each other’s toes” by starting
new ballots too early

Depending on message delay, node might “step on each other’s toes” by starting
new ballots too early

Depending on message delay, node might “step on each other’s toes” by starting
new ballots too early

Depending on message delay, node might “step on each other’s toes” by starting
new ballots too early

Depending on message delay, node might “step on each other’s toes” by starting
new ballots too early

Depending on message delay, node might “step on each other’s toes” by starting
new ballots too early

To make things easier, we abstract timers away

Instead of modeling message delay and timers, we prove the following liveness
property:

If there is a good ballot B such that:

● No node starts a higher ballot
● The leader of B is well-behaved

Then, eventually, all well-behaved nodes decide

In TetraBFT, the general idea is the same but the protocol
is more complicated

● There are 6 types of messages per ballot
● The leader may be malicious!

○ Nodes must verify that the leader’s proposal is legitimate
○ Main difficulty: despite differing views, the leader must make sure that other nodes will be able

to check that it’s proposal is legitimate

The Paxos algorithm in TLA+ (excerpts)

The Paxos algorithm in TLA+ (excerpts)

The Paxos algorithm in TLA+ (excerpts)

The Paxos algorithm in TLA+ (excerpts)

The Paxos algorithm in TLA+ (excerpts)

Methodology, step 1: prophesize the “good ballot”

Without Byzantine behavior, we can check the following
temporal property with TLC… but, with TetraBFT, we run
into scaling issues

Instead, we will verify that all fairly-scheduled actions are
eventually disabled, and that once this is the case we must
have a decision

Methodology, step 2: verify that all fairly-scheduled actions are
self-disabling
Since we work in a finite domain, the property implies that, if those actions are
fairly scheduled, then eventually all will be disabled

This implies that, if Liveness holds and the actions are fairly scheduled, then
eventually one value is chosen

Methodology, step 2a: add ghost variable to remember which
actions took place already

…

Methodology, step 2b: assert and verify with an inductive
invariant that all fair actions are self-disabling

Methodology, step 3: verify with an inductive invariant that,
once all actions are disabled, we have a decision

Verifying liveness of eventually-synchronous consensus
protocols, in a nutshell

1. We modify the specification to non-deterministically pick a good ballot B and
enforce that no higher ballots are started and that the leader of B is
well-behaved

2. We verify that each fair action is self-disabling. Under fair scheduling, this
means that all (the finitely many) actions will eventually be disabled.

3. We verify that, once all actions are disabled, we have a decision

In steps 2 and 3 we verify safety properties
We can use an inductive invariant verified with Apalache

We are able to check the liveness of TetraBFT for
interesting problem sizes

Problem size

● 3 rounds (with 5 sub-phases per round)
● 3 possible decision values
● 3 nodes n₁, n₂, n₃
● Either n₂ or n₃ are malicious (but not both)
● Quorums are {n₁,n₂} and {n₁,n₃}

Resources used by Apalache

● ~ few hours
● ~ 40 GB of RAM
● 16 cores on a recent (2022) desktop

machine

Specifications are available at
https://github.com/nano-o/tetrabft-tla

Future work

● Prove what we assumed about timer management, i.e. that eventually, there
is a ballot led by a well-behaved node such that no node ever starts a higher
ballot (Paxos)

○ Requires a real-time model of the behavior after GST
● Same thing for TetraBFT, where this is more complex: round progression must

be governed by a so-called BFT synchronizer algorithm

