
The Assignment Problem

Carole Delporte1, Hugues Fauconnier1, Eli Gafni2, and Giuliano Losa2
1University Paris Diderot 2UCLA

October 27, 2017

Abstract

In the allocation problem, asynchronous processors
must partition a set of items so that each processor
leave knowing all items exclusively allocated to it. We
introduce a new variant of the allocation problem
called the assignment problem, in which processors
might leave having only partial knowledge of their
assigned items. The missing items in a processor
assignment must eventually be announced by other
processors.

While allocation has consensus power 2, we show
that the assignment problem is solvable read-write
wait-free when k processors compete for at least 2k−1
items. Moreover, we propose a long-lived read-write
wait-free assignment algorithm which is fair, allocating
no more than 2 items per processor, and in which a
slow processor may delay the assignment of at most
n items, where n is the number of processors.

The assignment problem and its read-write solu-
tion may be of practical interest for implementing
resource allocators and work queues, which are per-
vasive concurrent programming patterns, as well as
stream-processing systems.

1 Introduction

We consider the problem of uniquely allocating items
to processors in an asynchronous shared-memory sys-
tem. This problem is pervasive in concurrent and
distributed programming, such as in work queues,
where jobs are to be dispatched to several processors,
or in resource allocation systems (e.g. memory alloca-
tion, allocation of process descriptors in an operating
system, etc.).

Classical examples of resource-allocation problems
include the dining-philosophers problem [9], the mu-
tual exclusion problem, and its generalization in the
L-exclusion problem [11]. Because some processors
may have acquired all the resources while others are
trying to acquire resources, these problems trivially
admit no wait-free solutions, and they are therefore
usually studied under the assumptions that processors
are scheduled fairly. For example, Peterson’s mutual
exclusion algorithm [23] or Lamport’s Bakery algo-
rithm [17] solve the mutual exclusion problem under
fair scheduling, but may only be as fast as the slowest
processor in the system.

The long-lived renaming problem [21] is a relaxed
form of allocation in which processors repeatedly ac-
quire and release a single item each taken among
a number of items larger than the number of pro-
cessors. Because of the availability of spare items,
there is still possibility for progress even if proces-
sors do not release acquired items. Moreover, given
enough spare items, the flexibility processors have
in choosing their items allows to solve the long-lived
renaming problem wait-free and using only atomic
registers. However, having spare item may be con-
sidered a wasted, as some items are not allocated to
any processor. Nevertheless, read-write wait-free algo-
rithms are advantageous: wait-freedom provides the
highest degree of fault-tolerance, and atomic registers
are implementable from some of the most unreliable
communication primitives, e.g. safe registers [18].

We ask whether there is a trade-off between long-
lived renaming, which is solvable read-write wait-free
but leave some items unallocated, and problems like
mutual-exclusion, which allow full allocation but are

1

only implementable read-write under fair scheduling
of all processors. To simplify our analysis, we start by
considering single-use allocation problems (in which
processors try to acquire items only once and do not
release them) in the wait-free model.

In the (single-use) allocation problem, a set of items
R numbered 1 to r must be allocated to a set of n = r
processors such that each item is allocated to a single
processor. If all we require is that each processor get
at least one item, then the problem is trivial: we can
statically pre-allocate items to processors and solve
the problem without any synchronization. However,
we would still waste items if not all processors partic-
ipate. We cannot require that the first processors to
come take all items, as this would preclude every pro-
cessor getting at least one item. But we can require
that the first processors get the first items, which
would help at least for provisioning items (e.g. if one
knows that only k processors will request items, no
need to provision more than k). Formally, assuming
that r ≥ n, we require that when k processors request
items, then exactly the first k items (no more, no less)
are allocated. As we will see in Section 3, the single-
use allocation problem cannot be solved wait-free
with registers, and synchronization primitives such
as test-and-set are needed. Can a relaxed allocation
problem be solved read-write wait-free? Single-use
renaming [5] can, but we have seen that it wastes
items.

For applications such as work queues or stream
processing, it may be sufficient to give a processor
a partial allocation of items, letting this processor
work with its partial allocation before coming back
to get its remaining allocated items. If items are
jobs to be completed, this would allow a processor
to start working on a job before knowing the full set
of jobs it has been allocated, and to come back later
when it finishes its first jobs to retrieve its remaining
allocated jobs. If items are resources needed for some
task, a processor may start working with restricted
resources while waiting for its full resource allocation
to be revealed.

To capture the intuition above, we propose the
assignment problem. In the single-use version of the
assignment problem, each processor p must announce
a set of items D[p] and the corresponding assignment

a[p] : D[p] → P describing, for each item i ∈ D[p],
the processor a[p][i] to which i is assigned to. To
solve the assignment problem given a non-triviality
parameter f : N→ N (where f is strictly increasing),
four conditions must be met:

Fairness: every processor p announces an assignment
in which it gets at least one item.

Consistency: if two processors announce an assign-
ment for item i, then they assign i to the same
processor.

Non-Triviality: for every k, if k processors partici-
pate, then

1. only the first f(k) items may be assigned,
and

2. if all k processors terminate, then every item
in {1, . . . , f(k)} is announced.

In formulating the assignment problem, we hope
to obtain a problem that is solvable read-write wait-
free. However, one can see that this will depend
on the non-triviality condition: if the non-triviality
condition stipulates that exactly the first k items
must be allocated when k processors participate, then
the allocation problem and the assignment problem
coincide and consensus power 2 will be needed. Hence
the question: under what non-triviality condition is
the assignment problem solvable read-write wait-free?

We can derive a non-triviality lower bound by ob-
serving that the assignment problem offers a solu-
tion to the f(k)-adaptive-renaming problem [5]. As

Gafni et al. [12] have shown,
(

2k − d k
n−1e

)
-adaptive-

renaming can be used to solve (n− 1)-set-consensus,
and is therefore impossible to solve read-write wait-
free. Therefore, f(k) = 2k − d k

n−1e is a lower bound
under which the assignment problem is not solvable
read-write wait-free. As we will see, this lower bound
is tight. Moreover, given this bound, the best we
can hope for in terms of fairness of the assignment is
that each processor get at most two items. Surpris-
ingly, this is also achievable. The assignment problem
and its read-write wait-free solution are presented
in Section 4.

2

Finally, in Section 5, we extend our investigation
to a long-lived version of the assignment problem,
in which processors repeatedly come back to get new
items from an infinite stream of items, and we propose
a read-write wait-free solution based on the single-use
algorithm. We then present an optimized version of
the long-lived algorithm which bounds by a constant
the number of items that may be left unassigned be-
cause of a slow processor. In a solution based on
mutual exclusion, e.g. using the Bakery algorithm, a
slow processor can arbitrarily delay the whole system
even when the slow processor is not in its critical sec-
tion. In contrast, the optimized long-lived assignment
algorithm presented in Section 5 ensures that a slow
processors delays the assignment of at most n items
while the other processors suffer no delay.

All the algorithms presented are formalized in the
PlusCal [19] language, and their properties in a sys-
tem of 4 processors have been verified using the
TLC model-checker [24]. The full PlusCal formaliza-
tions are available at https://losa.fr/research/

assignment.

2 Model

We consider a set P of asynchronous processors
communicating through a single-writer multi-reader
shared memory and optionally through tasks and lin-
earizable objects. When P is finite, we write n for
the number of processors. Each processor has a pri-
vate local state and a private read-only input. The
memory consists in one register Lp per processor p. A
processor can take local steps, read steps, write steps,
object-invocation steps, task input steps, and task
output steps. The next step of a processor is always
enabled, i.e. a processor cannot wait for a condition.
In a read-write algorithm, processors can only take
read steps and write steps.

A write operation by processor p writes to regis-
ter Lp only, and a read operation returns an atomic
snapshot [2] of the entire shared memory. Objects
are sequential state-machines with a transition rela-
tion relating pre-state, operation, response, and post-
state; an object-invocation step, taking an operation
as parameter, changes the object state and returns

a response to the invoking processor in a single step
and according to the transition relation of the object.

Let an input vector be a partial function from pro-
cessor to input, and an output vector be a partial
function from processor to output. A task is a partial
function mapping an input vector to a set of output
vectors which have the same domain as the input
vector. Informally, given the set of participating pro-
cessors in a run and their input, a task describes the
allowed outputs of those processors. A task input step
does not return any response to a processor, while
a task output step non-deterministically produces a
response such that the output vector of the task, as
observed so far, can be completed to an output vec-
tor in relation with the input vector of the task, as
observed so far.

An algorithm assigns an initial local state and a
deterministic sequential program to every processor
(subject to the constraint that if a processors takes a
task input step, then its next step must be the cor-
responding task output step). A run of an algorithm
consists of an input vector and an infinite sequence
of processor steps, where each processor starts with
the input assigned to it by the input vector and takes
steps according to the algorithm. A processor may
terminate by finishing its program and writing an
output in its local state, in which case it only takes
stuttering steps (i.e. steps that do not change its state)
thereafter. An algorithm is wait-free if every processor
that takes infinitely many steps eventually terminates.

We say that a processor p participates in a run if
p takes at least one step. Throughout the paper, we
write Q for the set of participating processors in a
run and k for their number (k = |Q|).

An algorithm solves a task ∆ when

1. the algorithm is safe: in every run in which the
input vector is in the domain of ∆ and all partic-
ipating processors terminate, the input vector is
related by the task to the output vector observed
in the run, and

2. the algorithm is wait-free.

Note that in most of the tasks that we use in this
paper, a processor receives no input. In this case, a

3

https://losa.fr/research/assignment
https://losa.fr/research/assignment

task reduces to a relation between participating sets
and output vector.

The consensus number of a task or object type is the
maximum number of processors for which there exists
a wait-free algorithm that solves the consensus task
using registers and instances of the task or object type.
By convention, every task or object has consensus
number at least 1. Consensus is impossible to solve
with registers even for two processors [20], therefore
registers have consensus number 1.

Throughout the paper, we make use of solutions to
the following three input-less tasks. In the test-and-
set task, exactly one participant must output 1 while
all others must output 0. Test-and-set has consensus
number 2, therefore it has no read-write wait-free
solution. However, test-and-set can be solved using
2-processors consensus.

In the immediate-snapshot task [6], each partici-
pating processor p must output a set of participating
processors is[p] such that p ∈ is [p] and, for every two
processors p and q, is [p] ⊆ is [q] or is [q] ⊆ is [p], and if
p ∈ is[q] then is[p] ⊆ is[q]. The immediate-snapshot
task is solvable read-write wait-free.

In the (2k − 1)-adaptive-renaming task [4], each
participating processor p must output a unique integer
name[p], called p’s name, such that, for every k, when
k processors participate, 1 ≤ name[p] ≤ 2k − 1. The
(2k−1)-adaptive-renaming task are solvable read-write
wait-free.

In a long-lived problem, a processor receives a new
input each time it produces an output, and must
match the new input with an output. We consider
long-lived problems that can be specified as tasks
for infinitely many processors, i.e. such that there is
a task ∆ for infinitely many processors such that a
solution to ∆ can be transformed into a solution to
the long-lived problem by having each processor pick
a fresh identifier for itself each time it receives a new
input (e.g. by using identifiers of the form 〈p, i〉 where
i is an integer incremented each time a fresh identifier
is needed).

Note that this class of long-lived problem excludes
problems in which a processor operation is constrained
by the operations it performed before. An example of
task that is outside the class is the long-lived renaming
problem [22], in which a process can release a name

only if it previously acquired it. Also note that in
a long-lived problem for n processors, the number
of concurrent processors is trivially bounded by n.
Therefore, since we consider tasks for infinitely many
processors only as a model of long-lived problems, we
will assume that the number of processors active at
any given moment (i.e. the number of participants
minus the number of processors that terminated) is
always bounded by n.

3 The Allocation Problem

Consider a set R of r ≥ n items numbered 1 to r to
allocate to the processors. In the allocation problem,
we would like each processor p ∈ P to output a set
D[p] ⊆ R such that {D[p] | p ∈ P} is a partition of R.
We require that if k processors participate, then the
allocation forms a partition of the first f(k) items, for
some strictly increasing function f : N→ N such that
f(0) = 0 and f(n) = r (hence there are at least as
many items as participants, and all items are allocated
if all processors participate). We also require that
each processor get at least one item.

Definition 1. In the allocation task, processors have
no input and each processor p must output a set D[p] ⊆
R such that: D[p] 6= ∅, and if a set Q of k processors
participate then {D[p] | p ∈ Q} must be a partition of
{1, 2, . . . , f(k)}.

Given a solution to allocation, 2 processors can solve
the consensus problem as follows. A processor p first
posts its consensus proposal to shared-memory, and
then participates in allocation and obtains an output
D[p]. If 1 ∈ D[p] then p decides its own proposal.
Otherwise, p decides the proposal of the only other
processor q. Observe that when a processor p is the
only participant, p must necessarily obtain 1 ∈ D[p]
because, according to the definition of allocation, we
must have D[p] = {i | 1 ≤ i ≤ f(1)}. Therefore, if a
processor p sees 1 /∈ D[p], then there must be another
participant, and its proposal must be posted to shared-
memory. In the case of a system of 2 processors, the
other participant q is determined, and it must see
1 ∈ Dq, because {D[p], D[q]} must be a partition of
{i | 1 ≤ i ≤ f(2)}, and therefore decide its own value.

4

Therefore both participants decide the same value.
This shows that allocation has consensus power at
least 2.

The allocation problem can be solved for any f
using an array of n test-and-set objects {T [i] | 1 ≤
i ≤ n}. To solve allocation, a processor p accesses the
test-and-set objects one-by-one, in order, and stops at
the first test-and-set object T [i] that it wins, returning
the set of items D[p] = {j | f(i − 1) < j ≤ f(i)}.
This algorithm is presented in the PlusCal language
in Figure 1. Since allocation is solvable using test-
and-set, which is implementable from 2-processors
consensus, it has consensus power at most 2.

Theorem 1. The allocation problem has consensus
power 2.

11 --algorithm Allocation{
12 variables

the outputs of the processors:

22 D = [p ∈ P 7→ Bot] ;

return value of TestAndSet procedure:

26 ret = [p ∈ P 7→ Bot] ;
45 process (p ∈ P) variables j = 1 ; {
49 l1: while (j ≤ N) {
50 call TestAndSet(j) ;
51 l2: if (ret [self]) {
52 if (j = 1) D [self] := 1 . . f [1]
53 else D [self] := (f [j − 1] + 1) . . f [j] ;
54 goto “Done” }
55 else j := j + 1 } } }

Figure 1: Algorithm for solving allocation.

4 Single-Use Assignment

Given a function f : N → N, we formally define the
assignment task as follows.

Definition 2. In the assignment task, each processor
must output a function a[p] : D[p]→ P whose domain
D[p] is a set of items and such that:

Fairness: For every processor p, there is r ∈ D[p]
such that a[p][r] = p.

Consistency: For every processors p and q, if r ∈
D[p] and r ∈ D[q] then a[p][r] = a[q][r].

Non-Triviality: If a set Q of k processors partici-
pate, then

1. for every p ∈ Q, D[p] ⊆ {1, . . . , f(k)} and
a[p] ranges over Q, and

2. for every item i ∈ {1, . . . , f(k)}, there is a
processor p ∈ Q such that i ∈ D[p].

When a processor p terminates with output a[p] :
D[p] → P we say that p announces the items in
D[p]. This definition is a formalization of the intuitive
definition given in the introduction, and restarted
below.

Fairness: every processor p announces an assignment
in which it gets at least one item.

Consistency: if two processors announce an assign-
ment for item i, then they assign i to the same
processor.

Non-Triviality: for every k, if k processors partici-
pate, then

1. only the first f(k) items may be assigned,
and

2. if all k processors terminate, then every item
in {1, . . . , f(k)} is announced.

We now present an algorithm for solving the as-
signment task assuming that f(k) = 2k − 1 and
|R| = 2n − 1. As noted in the introduction, this
matches a lower bound obtained by reducing the re-
naming problem to the assignment problem. The
algorithm uses immediate snapshot and adaptive-
renaming sub-routines. A formalization of the al-
gorithm in PlusCal appears in Figure 2.

A processor p first writes in shared-memory that it
participates, and then takes an immediate snapshot
(label l1). Then p invokes an instance of adaptive
renaming in which only the members of p’s immediate
snapshot participate, obtaining the output Name(p)
(label l2). Processor p then considers the item number
2
∣∣is[p]

∣∣ − Name(p) assigned to itself and writes it
to shared memory in the variable firstItem[p] (label

5

11 --algorithm SingleUseAssignment{
12 variables
13 participating = [p ∈ P 7→ false] ;
14 firstItem = [p ∈ P 7→ Bot] ; variable to post first item to shared memory.

15 is = [p ∈ P 7→ Bot] ; immediate snapshot output.

16 name = [i ∈ subset P 7→ [p ∈ P 7→ Bot]] ; renaming instances output.

17 a = [p ∈ P 7→ Bot] ; processor outputs

21 define {
63 Name(p)

∆
= name[is[p]][p]

64 Assign(Participant)
∆
=

65 let Posted
∆
= {i ∈ Item : ∃ p ∈ Participant : firstItem[p] = i}

66 Domain
∆
= 1 . . 2 ∗ Cardinality(Participant)− 1

67 Free
∆
= Domain \Posted

The free item i has position k when it is the kth smallest free item:

72 Position(i)
∆
= Cardinality({j ∈ Free : j ≤ i})

A processor has rank i when its first item is the ith smallest posted item:

77 Rank(p)
∆
= Cardinality({q ∈ Participant : firstItem[q] ≤ firstItem[p]})

78 in [i ∈ Domain 7→ if i ∈ Posted
79 then choose p ∈ Participant : firstItem[p] = i
80 else choose p ∈ Participant : Rank(p) = Position(i)] }
96 fair process (proc ∈ P) {
97 l1: participating [self] := true ;
98 call ImmediateSnapshot() ;
99 l2: call Renaming(is[self]) ;

100 l3: firstItem[self] := 2 ∗ Cardinality(is[self])−Name(self) ;
101 l4: with (Participant = {p ∈ P : participating [p]})
102 if (∃ p ∈ Participant : firstItem[p] = Bot) a[self] := [i ∈ {firstItem[self]} 7→ self]
103 else a[self] := Assign(Participant) ; } }

Figure 2: Read-write algorithm solving single-use assignment.

l3). At this point we say that p posted its first item;
moreover, if firstItem[q] = i for some q ∈ P and i ∈ R,
then we say that i has been posted. Finally, at label
l4 , p checks whether there is a participant that did
not post its first item. If this is the case, then p
announces only its first assigned item, i.e. it outputs
a[p] = [firstItem[p] 7→ p].

Otherwise, when all the k participants posted their
first item, p announces the assignment of all first 2k−1
items as follows. Let us say that an item among the
first 2k − 1 is free if it has not been posted. Proces-
sor p assigns every posted item i to the processor q
that posted firstItem[q] = i (this processor is unique
by Lemma 1 below), and p assigns the ith free item
to the processor q that posted the ith biggest item
(also unique by Lemma 1).

To show that Figure 2 solves the assignment task,
we need the following definitions. Consider a run
of the algorithm in which a set Q of k processors
participate, and consider the immediate snapshots
IS 1, . . . , ISm obtained by the participants, ordered by
inclusion, and let IS 0 = ∅. Define the sequence of sets
of processors G1, . . . , Gm where Gi = IS i \ IS i−1, and
let G0 = ∅. Finally, define the sequence of intervals
I1, . . . , Im where Ii = {2|IS i−1| + 1, . . . , 2|IS i| − 1}.
Note that if i < j then Max (Ii) ≤ Min (Ij), and that
|Ii| = 2|Gi|−1. Those definitions are best understood
by considering the following lemmas.

Lemma 1. For every i ∈ {1, . . . ,m}, the members
of Gi obtain unique first items in the interval Ii, and
only processors in Gi obtain items in Ii.

Proof. By definition of immediate snapshot, a pro-

6

cessor obtains the immediate snapshot IS i if and
only if it belongs to Gi. Moreover, by definition
of the algorithm, only the members of Gi ever ac-
cess the adaptive-renaming instance for the set of
processors Ii. Therefore, by property of adaptive re-
naming, the members of Gi obtain unique names in
{1, . . . , 2|Gi| − 1}, and only processors in Gi obtain
items in Ii = {2|Ii−1| + 1, . . . , 2|Ii| − 1}. Thus, by
definition of the algorithm at label l3 , the members of
Gi obtain unique first items in Ii, and only processors
in Gi obtain items in Ii.

Note that Lemma 1 implies that every processor
gets a unique first item. Let PostedBy(i) = p if i is
posted by processor p in the run under consideration
and PostedBy(i) = ⊥ /∈ P otherwise. By Lemma 1,
PostedBy(i) is well-defined.

Lemma 2. Every processor p that takes the else
branch at label l4 does so with Participant = IS i

for some i ∈ {1, . . . ,m}.

Proof. By definition of the algorithm, when p takes
the else branch at label l4 , every processor invoked
and returned from immediate snapshot at label l1 .
Therefore, by definition of immediate snapshot, at
least one processor obtained an immediate snapshot
containing all the participants.

Lemma 3. If p announces i and PostedBy(i) = q,
then a[p][i] = q.

Proof. First, since PostedBy(i) = q when p announces
its output, note that q posted its item before p reached
l4 . Consider two cases. First, suppose p = q. There-
fore, if p takes the if branch at l4 , then it announces
[i 7→ p] and we are done. If p takes the else branch,
then by definition of the Assign operator, we have
a[p][p] = i, and we are done.

Second, suppose that p 6= q. If p takes the if branch
at l4 , then it announces [j 7→ p] where PostedBy(j) =
p. By Lemma 1, we must have i 6= j, and we are done.
If p takes the else branch at l4 , then by Lemma 2
there is j ∈ {1, . . . ,m} such that a[p] = Assign(IS j),
IS j is exactly the set of participants at this point, and
all members of IS j posted their first item. Therefore
either (a) q did not participate yet and q /∈ IS j , or
(b) q ∈ IS j and q posted its first item.

In case (a), q ∈ Gl for l > j; therefore, by Lemma 1,
item i is strictly greater than Max (Ii). Moreover, the
domain of a[p] = Assign(IS j) is Ij by definition of
the Assign operator. Thus i /∈ a[p] and p does not
announce i, a contradiction.

In case (b) we have a[p][q] = i, by definition of the
Assign operator, and we are done.

Lemma 4. If p takes the else branch at l4 before
q takes the same else branch, then for every item i
announced by p, i ∈ D[q] and a[q][i] = a[p][i].

Proof. By Lemma 2, there are j < k ∈ {1, . . . ,m}
such that all members of ISk posted their first item
by the time q takes the else branch at l4 , and a[p] =
Assign(IS j and a[q] = Assign(ISk).

Note that at the time p takes the else branch at
l4 , all members of IS j posted their first item. There-
fore, by definition of the Assign operator, the rank
of a processors p ∈ IS j is the same in the defini-
tion of Assign(IS j) and in the definition Assign(ISk).
Moreover, by Lemma 1, the free items in the range
{1, . . . , 2|Ij | − 1} do not change after p takes the else
branch at l4 . Thus, by definition of the Assign oper-
ator, if i is announced by p then a[q][i] = a[p][i].

Lemma 5. At least one participant pl finds at label
l4 that all participants posted their first item.

Proof. The last participant to post its first item finds
at l4 that all participants posted their first item.

Theorem 2. The single-use assignment algorithm
of Figure 2 solves the assignment task using only reg-
isters.

Proof. The algorithm clearly uses only registers,
and so does its immediate-snapshot and adaptive-
renaming sub-routines. Moreover, its immediate snap-
shot and its adaptive-renaming sub-routines are wait-
free, and every processor performs at most 4 atomic
steps in the algorithm, therefore the algorithm is wait-
free. It remains to show that outputs satisfy the
assignment task.

Notice that every processor announces at least the
item that it posted. Therefore, the Fairness property
of the assignment task is satisfied.

7

To show the Consistency property, consider two
processors p and q that both announce item i. If
both p and q take the if branch at label l4 , then
by Lemma 1 they cannot both announce i. Therefore,
without loss of generality, either p takes the if branch
and q takes the else branch, or both take the else
branch at label l4 . Suppose p takes the if branch and
q takes the else branch. Then, i must be the item
posted by p, and by Lemma 3 both p and q announce
the same assignment for i, and we are done. Suppose
both p and q take the else branch at label l4 , and,
without loss of generality, that p does so before q.
Then, by Lemma 4, if i is in the domain of a[p], then
a[q][i] = a[p][i], and we are done.

Part (a) of the Non-Triviality property follows
from Lemma 1 because for every i ∈ {1, . . . ,m},
Ii ⊆ {1, . . . , 2k − 1}. Part (b) follows from Lemma 5:
the last participant to post its item, pl, sees all k
participants and takes the else branch at l4 ; therefore,
by the definition of the Assign operator, pl announces
all the first 2k − 1 items.

Note that the algorithm is as fair as can be: it
guarantees that a processor gets at least one item and
at most 2. Since 2k − 1 items are assigned when k
processors participate, this is optimal.

Finally, note that we can modify the algorithm to
work with any function f such that f(1) ≥ 1 and
f(k)− f(j) ≥ 2(k − j)− 1 for every k > j ∈ N. For
this, we first change the first item of a processor p to
be the item number f(

∣∣IS (p)
∣∣) − Name(p) (at label

l3), and we change how a processor p, that sees all
the renaming output of the participants (at label l4 ,
else branch), allocates the remaining items. Let k
be the number of participants that p sees when it
takes its step at label l4 . Processor p uses a larger
domain {i | 1 ≤ i ≤ f(k)}, and, for every j from 1 to
k, p allocates the next f(j + 1)− f(j)− 1 free items
to the processor of rank j (when j = k, there may
not remain enough items, and in this case only the
remaining free items are assigned).

5 Long-Lived Assignment

We now consider solving the assignment task for in-
finitely many processors, assuming that the number
of concurrently active processors is bounded by a con-
stant. As explained in Section 2, when the set of
processors is fixed, this allows processors to repeat-
edly invoke the task by picking a fresh identifier for
each new invocation.

The definition of the task is the same as in the
single-use case, except that the set of processors P is
infinite and the set of items R is also infinite. Items
and processors are numbered 1, 2, . . . , and we assume
that f : N→ N is such that f(k) = 2k − 1.

Note that we do not consider releasing items already
assigned, but only assigning new items from an infinite
stream of items. The non-triviality condition of the
assignment task ensures that only the first 2k − 1
items may be assigned when k processors participate.
In the long-lived setting, this means that processors
cannot get items arbitrarily far in the stream: if m is
the number of times that processors invoked the task,
then only the first 2m− 1 items may be assigned.

Obtaining a long-lived assignment algorithm is sim-
ple: it suffices to replace the immediate-snapshot sub-
routine in the algorithm of Section 4 by an immediate
snapshot for infinitely many processors (but bounded
concurrency), as provided, e.g., by Afek et al. [1].

Note that, in the long-lived setting, if processors
progress at the same speed then the stream of items
will be consumed without leaving holes. If not, some
items may be left unassigned while more and more
items farther in the stream are assigned. In fact, a
processor can arbitrarily delay the allocation of an
arbitrary large number of items: if a processor p, after
reaching label l2 , delays its posting of its first item,
then after p reached l2 , every processor will only ever
get a single item because, at label l4 , every processor
will always find that p did not write firstItem[p].

We now present an optimization of the long-lived
algorithm in which a processor that stops can prevent
the allocation of at most n items, where n is the fixed
number of processors that repeatedly invoke the algo-
rithm. To achieve this property, we first introduce a
new label l1b, immediately after l1 , where a processor
posts to shared memory the immediate snapshot it

8

14 --algorithm LongLivedAssignment{
15 variables
16 name = [i ∈ subset P 7→ [p ∈ P 7→ Bot]] ; return values from renaming.

17 is = [p ∈ P 7→ Bot] ; return values from immediate snapshot.

18 postedIS = [p ∈ P 7→ Bot] ;
19 firstItem = [p ∈ P 7→ Bot] ;
20 a = [p ∈ P 7→ Bot] ; processor outputs

24 define {
65 Name(p)

∆
= name[is[p]][p]

A frame for p consists of two immediate snapshots IS1 and IS2 such that p is in IS2 but

not in IS1

70 Frame(p, PostedIS)
∆
= let IS

∆
= PostedIS ∪ {{}}in

71 {〈IS1, IS2〉 ∈ IS × IS : p ∈ IS2 ∧ p /∈ IS1}
72 MaxFrame(F)

∆
= choose 〈IS1, IS2〉 ∈ F : ∀ I ∈ F : IS1 ⊆ I [1] ∧ I [2] ⊆ IS2

Computing the assignment on an frame 〈Low , High〉:

76 Assign(Low , High)
∆
=

77 let ItemsPosted
∆
= {i ∈ Item : ∃ p ∈ High \Low : firstItem[p] = i}

78 Domain
∆
= 2 ∗ Cardinality(Low) + 1 . . 2 ∗ Cardinality(High)− 1

79 Free
∆
= Domain \ ItemsPosted

80 Position(i)
∆
= Cardinality({j ∈ Free : j ≤ i})

81 Rank(p)
∆
= Cardinality({q ∈ High \Low : firstItem[q] ≤ firstItem[p]})

82 in [i ∈ Domain 7→ if i ∈ ItemsPosted
83 then choose p ∈ High \Low : firstItem[p] = i
84 else choose p ∈ High \Low : Rank(p) = Position(i)]
85 }

102 fair process (proc ∈ P) {
103 l1: call ImmediateSnapshot() ;
104 l1b : postedIS [self] := is[self] ;
105 l2: call Renaming(is[self]) ;
106 l3: firstItem[self] := 2 ∗ Cardinality(is[self])−Name(self) ;
107 l4: with (PostedIS = {postedIS [p] : p ∈ P} \ {Bot})
108 if (∀F ∈ Frame(self , PostedIS) : ∃ p ∈ F [2] \F [1] : firstItem[p] = Bot)
109 a[self] := [i ∈ {firstItem[self]} 7→ self]
110 else with (Complete = {F ∈ Frame(self , PostedIS) : ∀ p ∈ F [2] \F [1] : firstItem[p] 6= Bot},
111 MaxF = MaxFrame(Complete))
112 a[self] := Assign(MaxF [1], MaxF [2])
113 }
114 }

Figure 3: Read-write algorithm solving assignment for infinitely many processors when at most n are
concurrent. The number of items blocked by a slow processor is bounded by n.

obtained at label l1 . Second, we modify the code
at label l4 as follows: a processor p at label l4 first
checks whether it can find two immediate snapshots
IS 1 and IS 2 that have been posted to shared memory
such that (1) p ∈ IS 2, (2) p /∈ IS 1, and (3) all mem-
bers of IS 2\IS 1 have written their first item to shared

memory. Two immediate snapshots 〈IS 1, IS 2〉 with
those properties are called a complete frame for p. If p
cannot find such a complete frame 〈IS 1, IS 2〉, then it
terminates with the output a[p] = [firstItem[p] 7→ p].
Otherwise, p picks 〈IS 1, IS 2〉 satisfying conditions (1),
(2), and (3) and such that IS 2 \IS 1 is maximal among

9

the complete frames for p. Finally, p uses the same
ranking mechanism as in the single-use case to com-
pute its output, using the Assign(IS 1, IS 2) operator,
except that it restricts the domain of its output to
the items in the range {2

∣∣IS 1

∣∣ + 1 . . . 2
∣∣IS 2

∣∣− 1}. A
PlusCal formalization of the optimized long-lived algo-
rithm appears in Figure 3. The algorithm correctness
relies on essentially the same arguments as Theorem 2:

Theorem 3. The long-lived assignment algorithm
of Figure 3 solves the long-lived assignment task using
only registers.

Theorem 4. When at most n processors can be active
at the same time, the long-lived assignment algorithm
of Figure 3 ensures that a processor that stops prevents
the allocation of at most n items.

Proof. A processor can block the assignment of some
items only if it stops after its first step but before it
posts its first item. Consider a run in which p does
so. Consider the immediate snapshots IS 1, . . . , ISm

obtained by the participants, ordered by inclusion.
Let IS i, i ∈ {1, . . . ,m}, be the biggest immedi-
ate snapshot in the run such that p /∈ IS i. By
the definition of the algorithm at label l4 , proces-
sor p prevents the allocation of all items in Ii+1 =
{2|IS i|+ 1, . . . , 2|IS i+1| − 1} that are not posted by
any processor. By property of immediate snapshot, at
worse, IS i+1 − IS i = n, thus |Ii+1| ≤ 2n− 1. Among
those, n−1 will be posted if only p stops, and therefore
p can prevent the allocation of n items at most.

6 Conclusion and Related
Work

We have shown that allocating items to asynchronous
processors requires primitives of consensus power 2,
but that a new variation on the allocation problem, the
assignment problem, is solvable read-write wait-free.
Moreover, we have presented a long-lived assignment
algorithm in which a failed processor can only pre-
vent the allocation of a constant number of items.
Long-lived assignment can readily be solved using a
mutual exclusion algorithm such as Lamport’s Bakery

algorithm [17]. However, in the Bakery algorithm, a
slow processor can arbitrarily delay the whole system
even when the slow processor is not in its critical
section. In contrast, the optimized long-lived assign-
ment algorithm presented in Section 5 ensures that
a slow processors delays the assignment of at most n
items while the other processors suffer no delay. The
long-lived assignment problem and its solution may
therefore be of interest to implement resource alloca-
tors, work queues, and stream processing systems.

Below we briefly survey related work on resource
allocation and on the adaptive-renaming problem,
whose solution we rely on in solving read-write assign-
ment.

In the dining-philosophers problem [9] or the
mutual-exclusion problem, a number of resources are
to be acquired to perform a task and then released,
but there are not enough resources for all processor
to perform their task at the same time. In the dining
philosophers problem, processors are placed in a ring
with one resource between each neighboring pair of
processors; a processor contends for the two resources
immediately adjacent to it in the ring. In the mutual-
exclusion problem, processors share a single resource
that they all contend for. Under the assumption that
all processors progress fairly, solutions to those prob-
lems must guarantee that no processor starve. The
specification of the problem does not leave room for
failures, as it becomes trivially unsolvable when some
resources are not released. Failures complicate alloca-
tion and increase the number of resources necessary to
make the problem solvable. At the very least, enough
resources should be available to satisfy one processor
should all others fail when holding resources.

The L-exclusion [11] problem is a generalization of
mutual exclusion in which at most L < n processors
can be the critical section simultaneously. Here, the
failure of L processors in the critical section trivially
halts the system, but the algorithm presented in [11]
may also deadlocks if L processors fail when trying
to enter the critical section.

In the m-renaming problem [5], n processors must
exclusively acquire a name between 1 and m, under
one of two non-triviality conditions: either the initial
identifiers of the processors are assumed to come from
an unbounded namespace, or, in adaptive renaming,

10

the range of names used must depend on the set of
processors that participate. The adaptive renaming
problem is not solvable read-write wait-free when k
processors out of n must perform renaming using the
first 2k−dk/(n− 1)e names [12]. With 2k− 1 names,
several wait-free adaptive renaming algorithms are
known [5, 6], as well as long-lived wait-free adaptive
renaming algorithms in which names can be released
by their owner [21, 22]. The musical chairs problem [3]
is a variant of renaming in which processors come with
preferences and must rename themselves such that
a processor gets his preferred name if no other par-
ticipant has the same preference. The musical chairs
problem is equivalent to renaming. The assignment
problem defined in this paper differs from renaming
or musical chairs in that all items must be assigned
to some processor; long-lived assignment differs from
the long-lived version of renaming in that, instead
of releasing items, processors consume items from an
infinite stream.

Castaneda et al. [8] study single-use assignment
under preferences and constraints. The problem they
study is a generalization of the renaming and musical
chairs [3] problems, where processors must choose
names subject to preferences that must be satisfied in
the absence of conflict, and subject to constraints that
precludes certain assignments. As in the renaming
problem, the problem they formulate has no require-
ments to assign all the items. While the algorithms
presented in this paper rely on renaming, Castaneda
et al. exhibit instances of the coordination task under
preferences and constraints in which renaming-based
solutions may not be optimal.
L-assignment (or “distinct CS”) [7, 4] is a variant of

L-exclusion in which processors entering the critical
section must additionally be assigned a unique slot out
of a number L of slots. The At-Most-Once problem of
Kentros et al. [16] is closely related to L-assignment
and renaming. It is a single-use allocation problem in
which some items may be left unallocated. Kentros
et al. give bounds on the number of items that can be
allocated read-write out of the total number of items
(called the efficiency of an algorithm), depending on
the number of processor failures. In contrast to our
work, Kentros et al. do not consider the possibility for
a processor to leave with a partial allocation whose

missing items will be revealed later by other processors.
In follow-up work, Kentros et al. study deterministic
solutions to the At-Most-Once problem that minimize
the work that processors have to perform [15], as
well as randomized solutions under fair scheduling
assumptions [14].

The Write-All problem [13], introduced by Kanel-
lakis and Schwarzmann, all positions in a shared array
must be set using the minimal amount of work (as
measured in number of steps). The Write-All prob-
lem differs from the allocation problem in that some
positions in the array may be set by multiple proces-
sors, while an item in the allocation and assignment
problems must be allocated exclusively to one proces-
sor. In the terminology of this paper, the Write-All
problem requires each item to be allocated at least
once, while the allocation and assignment problems re-
quires each item to be allocated at most once. Dwork
et al. study the Do-All problem [10], a variant of the
Write-All problem in message-passing systems.

The assignment algorithms presented in this paper
are inspired by the adaptive-renaming algorithm of
Borowsky and Gafni [6]. In this recursive algorithm,
processors use immediate snapshot to split themselves
in disjoint groups that each is implicitly assigned a
unique part of the namespace; then, each group recur-
sively solves adaptive-renaming among the members
of the group. The part of the namespace allocated to
a group is sufficiently big to place the outputs of the
corresponding adaptive-renaming sub-problem in that
part of the namespace. We reuse the idea of using im-
mediate snapshot to split processors into groups that
are implicitly assigned a unique part of the namespace
that is big enough to solve renaming among the group
member.

7 Acknowledgments

Carole Delporte and Hugues Fauconnier were sup-
ported by the Agence Nationale de la Recherche,
project DESCARTES, under grant agreement ANR-
16-CE40-0023. This research was partially supported
by Len Blavatnik and the Blavatnik Family founda-
tion. This material is based upon work supported
by the National Science Foundation under Grant No.

11

1655166.

References

[1] Yehuda Afek and Eytan Weisberger. “The in-
stancy of snapshots and commuting objects”. In:
Journal of Algorithms 30.1 (1999), pp. 68–105.
(Visited on 01/22/2017).

[2] Yehuda Afek et al. “Atomic Snapshots of Shared
Memory”. In: Journal of the ACM 40.4 (Sept.
1993), pp. 873–890. issn: 0004-5411. (Visited on
11/16/2016).

[3] Y. Afek et al. “Musical Chairs”. In: SIAM Jour-
nal on Discrete Mathematics 28.3 (Jan. 2014),
pp. 1578–1600. issn: 0895-4801.

[4] Hagit Attiya et al. “Renaming in an asyn-
chronous environment”. In: Journal of the ACM
(JACM) 37.3 (1990), pp. 524–548. (Visited on
02/03/2017).

[5] H. Attiya et al. “Achievable cases in an asyn-
chronous environment”. In: 28th Annual Sym-
posium on Foundations of Computer Science,
1987. Oct. 1987, pp. 337–346.

[6] Elizabeth Borowsky and Eli Gafni. “Immedi-
ate Atomic Snapshots and Fast Renaming”. In:
Proceedings of the Twelfth Annual ACM Sym-
posium on Principles of Distributed Computing.
PODC ’93. ACM, 1993, pp. 41–51. (Visited on
11/16/2016).

[7] J. E. Burns and G. L. Peterson. “The Ambigu-
ity of Choosing”. In: Proceedings of the Eighth
Annual ACM Symposium on Principles of Dis-
tributed Computing. PODC ’89. New York, NY,
USA: ACM, 1989, pp. 145–157.

[8] Armando Castañeda et al. “Asynchronous Co-
ordination Under Preferences and Constraints”.
en. In: Structural Information and Communi-
cation Complexity. Vol. 9988. Lecture Notes in
Computer Science. Springer, Cham, July 2016,
pp. 111–126. (Visited on 07/18/2017).

[9] E. W. Dijkstra. Two starvation free solutions of
a general exclusion problem, 1978. EWD, 1977.

[10] Cynthia Dwork, Joseph Y. Halpern, and Orli
Waarts. “Performing work efficiently in the pres-
ence of faults”. In: SIAM Journal on Computing
27.5 (1998), pp. 1457–1491.

[11] Michael J. Fischer et al. “Distributed FIFO
Allocation of Identical Resources Using Small
Shared Space”. In: ACM Trans. Program. Lang.
Syst. 11.1 (Jan. 1989), pp. 90–114. issn: 0164-
0925.

[12] Eli Gafni, Michel Raynal, and Corentin Travers.
“Test & set, adaptive renaming and set
agreement: a guided visit to asynchronous
computability”. In: 26th IEEE International
Symposium on Reliable Distributed Systems,
2007. IEEE, 2007, pp. 93–102. (Visited on
01/21/2017).

[13] Paris C. Kanellakis and Alex A. Schwarzmann.
“Efficient parallel algorithms can be made ro-
bust”. In: Distributed Computing 5.4 (1992),
pp. 201–217.

[14] Sotirios Kentros, Chadi Kari, and Aggelos Ki-
ayias. “The strong at-most-once problem”. In:
International Symposium on Distributed Com-
puting. Springer, 2012, pp. 386–400.

[15] Sotirios Kentros and Aggelos Kiayias. “Solv-
ing the at-most-once problem with nearly op-
timal effectiveness”. In: International Confer-
ence on Distributed Computing and Networking.
Springer, 2012, pp. 122–137.

[16] Sotirios Kentros et al. “At-most-once semantics
in asynchronous shared memory”. In: Interna-
tional Symposium on Distributed Computing.
Springer, 2009, pp. 258–273.

[17] Leslie Lamport. “A new solution of Dijkstra’s
concurrent programming problem”. In: Com-
munications of the ACM 17.8 (1974), pp. 453–
455.

[18] Leslie Lamport. “On interprocess communica-
tion: Part II”. en. In: Distributed Computing
1.2 (June 1986), pp. 86–101. issn: 0178-2770,
1432-0452. (Visited on 11/16/2016).

12

[19] Leslie Lamport. “The PlusCal Algorithm Lan-
guage.” In: ICTAC. Vol. 5684. Springer, 2009,
pp. 36–60.

[20] Michael C. Loui and Hosame H. Abu-Amara.
“Memory requirements for agreement among un-
reliable asynchronous processes”. In: Advances
in Computing research 4.163-183 (1987), p. 31.

[21] Mark Moir and James H. Anderson. “Wait-free
algorithms for fast, long-lived renaming”. In:
Science of Computer Programming 25.1 (Oct.
1995), pp. 1–39. issn: 0167-6423.

[22] Mark Moir and Juan A. Garay. “Fast, long-lived
renaming improved and simplified”. en. In: Dis-
tributed Algorithms. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, Oct. 1996,
pp. 287–303. (Visited on 07/22/2017).

[23] Gary L. Peterson. “Myths about the mutual
exclusion problem”. In: Information Processing
Letters 12.3 (1981), pp. 115–116.

[24] Yuan Yu, Panagiotis Manolios, and Leslie Lam-
port. “Model checking TLA+ specifications”. In:
CHARME. Vol. 99. Springer, 1999, pp. 54–66.

13

	Introduction
	Model
	The Allocation Problem
	Single-Use Assignment
	Long-Lived Assignment
	Conclusion and Related Work
	Acknowledgments

